Labilis szén, mint a talajbiológiai aktivitás indikátora mikrobiális oltóanyagok és Ca-tartalmú talajjavító alkalmazásánál
DOI:
https://doi.org/10.33038/jcegi.3559Kulcsszavak:
labilis szén, talajtípus, talajbiológia, kémhatás, termésnövelők, talajoltókAbsztrakt
A labilis szén (LOC) tartalom, az active szén (POXC=permanganát oxidálható szén) mérése a talajok mikrobiális aktivitásának a kimutatását szolgáló módszer. Célja a növények és a mikroorganizmusok számára is elérhető széntartalom megállapítása. Az LOC a szerves anyagok egy kis- és könnyen oxidálható része, a mikrobiális biomassza és a szénhidrát molekulák szén-tartalmának a mérésével, érzékenyebb a talajon végzett beavatkozásokra a teljes vagy összes szerves szén-tartalommal (TOC) összehasonlítva. Méréséinket tenyészedényes és szabadföldi kísérletekben végeztük, egy savanyú kémhatású gyenge P-ellátottságú és alacsony szervesanyag tartalmú agyagbemosódásos barna erdőtalajon (pH=4,9; Humusz=1.64 %; felvehető P2O5=66 mg kg-1), valamint egy semleges kémhatású magas P és szervesanyag tartalmú típusos réti talajon (pH=6.75; Humusz=2.53 %; felvehető P2O5=303 mg kg-1), kukorica (Zea mays) tesztnövénnyel. Vizsgálataink alapján a talajok LOC-tartalma jól szemlélteti a talajtípusok közötti különbséget, összefüggésben az eltérő kémhatású és szervesanyag tartalmú talajok biológiai aktivitásával. A talaj kémhatásának CaO kezeléssel való javítása hatással van a biológiai aktivitás, így a labilis szén-tartalom növekedésére is. Tenyészedényes kísérletben kereskedelmi mikrobiális oltóanyagok (Pseudomonas putida, Azotobacter chroococcum, Bacillus circulans, B. megaterium, Funneliformis-, Claroideoglomus- és Rhizophagus sp.) hatását az LOC-tartalom növekedése mindkét talajtípuson jelezni tudta. Szabadföldi körülmények között azonban nem találtunk különbséget az oltóanyagok hatására, mivel az LOC jellegzetes időbeli változását a talaj nedvességtartalma és a talajszerkezet időbeli – pl. vetés utáni – változásai is befolyásolni képesek.
Hivatkozások
ABAGANDURA, G. O. – MAHAL, N. K. – BUTAIL, N. P. – DHALIWAL J. K. – GAUTAM, A. – BAWA, A. – KOVÁCS, P. – KUMAR, S. (2022). Soil labile carbon and nitrogen fractions after eleven years of manure and mineral fertilizer applications. Archives of Agronomy and Soil Science, 1–16. DOI: https://doi.org/10.1080/03650340.2022.2043549
BAGYARAJ, D.J. – MEHROTRA, V.S. – SURESH, C.K. (2002). 23. Vesicular Arbuscular Mycorrhizal Biofertilizer for Tropical Forest Plants. Biotechnology of biofertilizers, 299.
BIRÓ, B. – KÖVES-PÉCHY, K. – VÖRÖS, I. – TAKÁCS, T. – EGGENBERG, P. – STRASSER, R.J. (2000). Interrelations between Azospirillum and Rhizobium nitrogen-fixers and arbuscular mycorrhizal fungi in the rhizosphere of alfalfa in sterile, AMF-free or normal soil conditions. Applied Soil Ecology, 15(2), 159–168. DOI: https://doi.org/10.1016/S0929-1393(00)00092-5
BIRÓ, B. (2005). A talaj, mint a mikroszervezetek élettere. A talajok jelentősége a 21. Században. Magyarország az ezredfordulón. Stratégiai kutatások a Magyar Tudományos Akadémián II. Az agrárium helyzete és jövije. (szerk: Stefanovits, P. Michéli, E.), 141–173.
BIRÓ B. (2019). Az új szemléletű biológiai talajerővizsgálat és értékelés szükségessége. Me-zőhír, (11), 40–43.
BLAIR, G.J. – LEFROY, R.D.B. – LISE, L. (1995). Soil carbon fractions based on their deg-ree of oxidation, and the development of a carbon management index for agricultural systems. Australian journal of agricultural research, 46(7), 1459–1466. DOI: https://doi.org/10.1071/AR9951459
BONGIORNO, G. – BÜNEMANN, E. K. – OGUEJIOFOR, C. U. – MEIER, J. – GORT, G. – COMANS, R. – MÄDER, P. – BRUSSAARD, L. – GOEDE, R. (2019). Sensitivity of labile carbon fractions to tillage and organic matter management and their potential as comprehensive soil quality indicators across pedoclimatic conditions in Europe. Ecological Indicators, 99, 38–50. DOI: https://doi.org/10.1016/j.ecolind.2018.12.008
DUDÁS, A. – SZALAI, Z.M. – VIDÉKI, E. – WASS-MATICS, H. – KOCSIS, T. – VÉG-VÁRI, Gy. – KOTROCZÓ, ZS. – BIRÓ, B. (2017). Sporeforming bacillus bioeffectors for healthier fruit quality of tomato in pots and field. Appl. Ecol. Environ. Res, 15(4), 1399–1418. DOI: https://doi.org/10.15666/aeer/1504_13991418
HALÁSZ, J. – KOTROCZÓ, ZS. – SZABÓ, P. – KOCSIS, T. (2022). Biomonitoring and Assessment of Dumpsites Soil Using Phospholipid Fatty Acid Analysis (PLFA) Method—Evaluation of Possibilities and Limitations. Chemosensors, 10(10), 409. DOI: https://doi.org/10.3390/chemosensors10100409
JUHOS, K. – MADARÁSZ, B. (2016). Interpretation and integration of pedological data in land evaluation systems. Bulgarian Journal of Agricultural Science, 22(2), 209–215.
KÁTAI, J. (2011). Alkalmazott talajtan. Debreceni Egyetem, Nyugat-Magyarországi Egyetem, Pannon Egyetem, Digitális Tankönyvtár. 108.
KHAN, M.S. – ZAIDI, A. – AHMAD, E. (2014). Mechanism of phosphate solubilization and physiological functions of phosphate-solubilizing microorganisms. In Phosphate solubilizing microorganisms (pp. 31-62). Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-08216-5_2
KOTROCZÓ, ZS. – VERES, ZS. – JUHOS, K. – BÉNI, Á. – VÁRBÍRÓ, G. – FEKETE, I. (2018). Szerves anyag mennyiségi és minőségi változás hatásai egyes talajbiológiai folyama-tokra. XIV. Kárpát-medencei Környezettudományi Konferencia kötete, 158–164.
KOTROCZÓ, ZS. – BIRÓ, B. – KOCSIS, T. – VERES, ZS. – TÓTH, J.A. – FEKETE, I. (2017). Hosszú távú szerves anyag manipuláció hatása a talaj biológiai aktivitására. Talajvéde-lem (különszám) pp, 73–83.
KOTROCZÓ, ZS. – VERES, ZS. – BIRÓ, B. – TÓTH, J.A. – FEKETE, I. (2014). Influence of temperature and organic matter content on soil respiration in a deciduous oak fo-rest. Eurasian Journal of Soil Science, 3(4), 303–310. DOI: http://dx.doi.org/10.18393/ejss.87903
KOVÁCS, B. – KOTROCZÓ, ZS. – KOCSIS, L. – BIRÓ, B. (2020). Potentials of indoor lettuce production in natural forest soil at limited watering. Journal of Central European Agri-culture, 21(3), 531–536. DOI: https://doi.org/10.5513/JCEA01/21.3.2897
LUCAS, S. T. – WEIL, R. R. (2012). Can a labile carbon test be used to predict crop res-ponses to improve soil organic matter management?. Agronomy Journal, 104(4), 1160–1170. DOI: https://doi.org/10.2134/agronj2011.0415
OLDEMANN, L.R. – HAKKELING, R.T.A. – SOMBROEK, W.G. (1991). World map of the status of human-induced soil degradation: an explanatory note. International Soil Referen-ce and Information Centre.
PABAR, S.A. – MÓNOK, D. – KOTROCZÓ, ZS. – BIRÓ, B. (2020). Soil microbial para-meters and synergies between bean growth and microbial inoculums as a dependence of five soils with different characteristics. HUNGARIAN AGRICULTURAL ENGINEERING, (37), 27–33. DOI: https://doi.org/10.17676/HAE.2020.37.27
RIEDER, Á. – MADARÁSZ, B. – SZABÓ, J. A. – ZACHÁRY, D. – VANCSIK, A. – RINGER, M. – SZALAI, Z. – JAKAB, G. (2018). Soil organic matter alteration velocity due to land-use change: A case study under conservation agriculture. Sustainability, 10(4), 943. DOI: https://doi.org/10.3390/su10040943
ROPER, M. M. – GUPTA, V. V. S. R. – MURPHY, D. V. (2010). Tillage practices altered labile soil organic carbon and microbial function without affecting crop yields. Soil Rese-arch, 48(3), 274–285. DOI: https://doi.org/10.1071/SR09143
SMITH, P. – GREGORY, P.J. (2013). Climate change and sustainable food pro-duction. Proceedings of the Nutrition Society, 72(1), 21–28. DOI: https://doi.org/10.1017/S0029665112002832
SPARLING, G. – VOJVODIC-VUKOVIC, M. – SCHIPPER, L.A. (1998). Hot-water-soluble C as a simple measure of labile soil organic matter: the relationship with microbial bio-mass C. Soil Biology and Biochemistry, 30(10-11), 1469–1472.
STEFANOVICS, P. – FILEP, GY. – FÜLEKY, GY. (1999). Talajtan. Mezőgazda Kiadó, Budapest, 415.
SZABÓ, P. – JORDAN, GY. – KOCSIS, T. – POSTA, K. – KARDOS, L. – ŠAJN, R. – ALIJAGIĆ, J. (2022). Biomonitoring and assessment of toxic element contamination in floodplain sediments and soils using fluorescein diacetate (FDA) enzymatic activity measure-ments: evaluation of possibilities and limitations through the case study of the Drava River floodplain. Environmental monitoring and assessment, 194(9), 1–19.
TAKÁCS, T. – CSERESNYÉS, I. – KOVÁCS, R. – KELLER, N. – FÜZY, A. (2016). Ef-fectiveness of single and coinoculation with Bradyrhizobium strains and am fungi on soybean cultivars. Növénytermelés, 65, 119–122.
VÁRALLYAY, GY. (2006). Soil degradation processes and extreme soil moisture regime as environmental problems in the Carpathian Basin. Agrokémia és Talajtan, 55(1), 9–18. DOI: https://doi.org/10.1556/agrokem.55.2006.1.2
WANDER, M.M. – DRINKWATER, L.E. (2000). Fostering soil stewardship through soil quality assessment. Applied Soil Ecology, 15(1), 61–73. DOI: https://doi.org/10.1016/S0929-1393(00)00072-X
WEIL, R. R. – KANDIKAR, R. I. – STINE M. A. – GRUVER J. B. – SAMSON-LIEBIG S. E. (2003). Estimating active carbon for soil quality assessment: A simplified method for laboratory and field use. American Journal of Alternative Agriculture, 18(1), 3–17. DOI: https://doi.org/10.1079/AJAA200228
WEIL, R.R. – MAGDOFF, F. (2004). Significance of soil organic matter to soil quality and health. Soil organic matter in sustainable agriculture, 1–43. DOI: https://doi.org/10.1201/9780203496374.ch1
Internet1: www.biofector.info, Letöltés dátuma: 2022. október 15.
Letöltések
Megjelent
Folyóirat szám
Rovat
License
Copyright (c) 2022 Journal of Central European Green Innovation
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.