Impact of Construction Technology on Air Quality
DOI:
https://doi.org/10.33038/jcegi.6444Keywords:
particulate matter, pm, construction work, air pollutionAbstract
Polluted air can be the causing factor of several diseases, including dementia and type 2 diabetes. One of the indicators of pollution is particulate matter (PM) concentration. In this paper, we investigate air pollution with a focus on PM10 and PM2,5 values. A device capable of measuring PM concentration has been installed in the 23rd district of Budapest. It is placed in a garden of the Virágvölgy residential complex, where construction work is continuously underway. The goal of this paper is to measure the degree to which the ongoing construction work affects the air inhaled by the residents of the complex. Based on the data gathered from the installed device, we analysed the trend of PM values over time. We have compared this to official measurements, regulatory limit values and recommendations by the WHO. We also examined the relationships between PM concentrations and weather factors, as well as the impact of rain on them. We aim to emphasize the importance of regularly monitoring air quality and the need to reduce air pollution.
References
ALVANCHI, A. – RAHIMI, M. – MOUSAVI, M. – ALIKHANI, H. (2020): Construction schedule, an influential factor on air pollution in urban infrastructure projects. Journal of Cleaner Production 255, 120222. https://doi.org/10.1016/j.jclepro.2020.120222
AZARMI, F. – KUMAR, P. – MARSH, D. – FULLER, G. (2016): Assessment of the long-term impacts of PM10 and PM2.5 particles from construction works on surrounding areas. Environmental Science: Processes & Impacts 18(2), 208–221. https://doi.org/10.1039/C5EM00549C
AZUMA, K. – IKEDA, K. – KAGI, N. – YANAGI, U. – OSAWA, H. (2018): Physicochemical risk factors for building-related symptoms in air-conditioned office buildings: Ambient particles and combined exposure to indoor air pollutants. Science of the Total Environment 616-617, 1649–1655. https://doi.org/10.1016/j.scitotenv.2017.10.147
BARMPADIMOS, I. – KELLER, J. – ODERBOLZ, D. – HUEGLIN, C. – PRÉVÔT, A.S.H. (2012): One decade of parallel fine (PM2.5) and coarse (PM10–PM2.5) particulate matter measurements in Europe: trends and variability. Atmospheric Chemistry and Physics 12(7), 3189–3203. https://doi.org/10.5194/acp-12-3189-2012
BÁTHORY, Cs. – DOBÓ, Z. – GARAMI, A. – PALOTÁS, Á. – TÓTH, P. (2022): Low-cost monitoring of atmospheric PM—development and testing. Journal of Environmental Management 304, 114158. https://doi.org/10.1016/j.jenvman.2021.114158
BOWE, B. – XIE, Y. – YAN, Y. – AL-ALY, Z. (2019): Burden of cause-specific mortality associated with PM2. 5 air pollution in the United States. JAMA network open 2(11), e1915834 https://doi.org/10.1001/jamanetworkopen.2019.15834
BÖHM, M. – SALEM, M.Z. – SRBA, J. (2012): Formaldehyde emission monitoring from a variety of solid wood, plywood, blockboard and flooring products manufactured for building and furnishing materials. Journal of Hazardous Materials 221, 68–79. https://doi.org/10.1016/j.jhazmat.2012.04.013
CHALOULAKOU, A. – KASSOMENOS, P. – SPYRELLIS, N. – DEMOKRITOU, P. – KOUTRAKIS, P. (2003): Measurements of PM10 and PM2.5 particle concentrations in Athens, Greece.Atmospheric Environment 37(5), 649–660. https://doi.org/10.1016/S1352-2310(02)00898-1
CHERIYAN, D. – HYUN, K.Y. – JAEGOO, H. – CHOI, J.H. (2020): Assessing the distributional characteristics of PM10, PM2.5, and PM1 exposure profile produced and propagated from a construction activity. Journal of Cleaner Production 276, 124335. https://doi.org/10.1016/j.jclepro.2020.124335
EKINCI, E. – KAZANCOGLU, Y. – MANGLA, S.K. (2020): Using system dynamics to assess the environmental management of cement industry in streaming data context. Science of the Total Environment, 715, 136948. https://doi.org/10.1016/j.scitotenv.2020.136948
GEHRING, U. – WIJGA, A.H. – BRAUER, M. – FISCHER, P. – DE JONGSTE, J.C. – KERKHOF, M. – OLDENWENING, M. – SMIT, H.A. – BRUNEKREEF, B. (2010): Traffic-related air pollution and the development of asthma and allergies during the first 8 years of life. American Journal of Respiratory and Critical Care Medicine 181(6), 596–603. https://doi.org/10.1164/rccm.200906-0858OC
HUNGAROMET (2024). HungaroMet Napijelentés kiadvány, elérhető: https://www.met.hu/idojaras/aktualis_idojaras/napijelentes/ Letöltés dátuma: 2024.10.03.
JANHÄLL, S. – OLOFSON, K.F.G. – ANDERSSON, P.U. – PETTERSSON, J.B. – HALLQUIST, M. (2006): Evolution of the urban aerosol during winter temperature inversion episodes. Atmospheric Environment 40(28), 5355–5366. https://doi.org/10.1016/j
JAVED, M. – BASHIR, M. – ZAINEB, S. (2021): Analysis of daily and seasonal variation of fine particulate matter (PM2.5) for five cities of China. Environment, Development and Sustainability 23, 12095–12123. https://doi.org/10.1007/s10668-020-01159-1
JUNG, S. – KANG, H. – SUNG, S. – HONG, T. (2019): Health risk assessment for occupants as a decision-making tool to quantify the environmental effects of particulate matter in construction projects. Building and Environment 161, 106267. https://doi.org/10.1016/j.buildenv.2019.106267
KHOSHNAVA, S.M. – ROSTAMI, R. – MOHAMAD ZIN, R. – ŠTREIMIKIENE, D. – MARDANI, A. – ISMAIL, M. (2020): The role of green building materials in reducing environmental and human health impacts. International Journal of Environmental Research and Public Health 17(7), 2589. https://doi.org/10.3390/ijerph17072589
KIS-KOVÁCS, G. (2015): PM emisszió a kibocsátási leltár tükrében. Légkör 60, 124-128. elérhető: https://epa.oszk.hu/03900/03956/00040/pdf/EPA03956_legkor_2015_3_124-128.pdf
LUO, K. – LI, W. – ZHANG, R. – LI, R. – XU, Q. – CAO, Y. (2016): Ambient fine particulate matter exposure and risk of cardiovascular mortality: adjustment of the meteorological factors. International journal of environmental research and public health 13(11), 1082. https://doi.org/10.3390/ijerph13111082
OLM (2022): Az OLM 2022. évi szálló por PM10 és PM2.5 mintavételi programjának összesítő értékelése, elérhető: https://legszennyezettseg.met.hu/levegominoseg/ertekelesek/olm-ertekelesek Letöltés dátuma: 2024.09.08.
OLM (2024): Országos Légszennyezettségi Mérőhálózat Automata mérőhálózat adatai, elérhető: https://legszennyezettseg.met.hu/levegominoseg/meresi-adatok/automata-merohalozat Letöltés dátuma: 2024.09.17.
OLOFSON, K.F.G. – ANDERSSON, P.U. – HALLQUIST, M. – LJUNGSTRÖM, E. – TANG, L. – CHEN, D. – PETTERSSON, J.B. (2009): Urban aerosol evolution and particle formation during wintertime temperature inversions. Atmospheric Environment 43(2), 340–346. https://doi.org/10.1016/j.atmosenv.2008.09.080
PAN, L. – XU, J. – TIE, X. – MAO, X. – GAO, W. – CHANG, L. (2019): Long-term measurements of planetary boundary layer height and interactions with PM2.5 in Shanghai, China. Atmospheric Pollution Research 10(3), 989–996. https://doi.org/10.1016/j.apr.2019.01.007
PATERAKI, S. – ASIMAKOPOULOS, D. – FLOCAS, H. – MAGGOS, T. – VASILAKOS, C. (2012): The role of meteorology on different sized aerosol fractions (PM10, PM2.5, PM2.5–10). Science of The Total Environment 419, 124–135. https://doi.org/10.1016/j
RAJARATHNAM, U. – ATHALYE, V. – RAGAVAN, S. – MAITHEL, S. – LALCHANDANI, D. – KUMAR, S. – BAUM, E. – WEYANT, C. – BOND, T. (2014): Assessment of air pollutant emissions from brick kilns. Atmospheric Environment 98, 549–553. https://doi.org/10.1016/j
ROGULA-KOZŁOWSKA, W. – KLEJNOWSKI, K. – ROGULA-KOPIEC, P. – OŚRÓDKA, L. – KRAJNY, E. – BŁASZCZAK, B. – MATHEWS, B. (2014): Spatial and seasonal variability of the mass concentration and chemical composition of PM2.5 in Poland. Air Quality, Atmosphere & Health 7, 41–58. https://doi.org/10.1007/s11869-013-0222-y
ŠENITKOVÁ, I.J. – KRAUS, M. (2016): Assessment of selected interior flooring materials on indoor air quality. Procedia engineering 161, 1527–1531. https://doi.org/10.1016/j.proeng.2016.08.621
SHAFIQUE, M. – XUE, X. – LUO, X. (2020): An overview of carbon sequestration of green roofs in urban areas. Urban Forestry & Urban Greening 47, 126515. https://doi.org/10.1016/j.ufug.2019.126515
SHARMA, S. – CHANDRA, M. – KOTA, S.H. (2020): Health effects associated with PM2.5: A systematic review. Current Pollution Reports 6, 345–367. https://doi.org/10.1007/s40726-020-00155-3
SHUKLA, A. – TIWARI, G. – SODHA, M. (2009): Embodied energy analysis of adobe house. Renewable Energy 34(3), 755–761. https://doi.org/10.1016/j
SIRITHIAN, D. – THANATRAKOLSRI, P. (2022): Relationships between Meteorological and Particulate Matter Concentrations (PM2.5 and PM10) during the Haze Period in Urban and Rural Areas, Northern Thailand. Air, Soil and Water Research 15. https://doi.org/10.1177/11786221221117264
SOMOSKŐI, L. – LECZOVICS, P. (2020): A zöldtetők előnyei az építőipari gyakorlatban: Benefits of green roofs in construction practice. Nemzetközi Építéstudományi Konferencia–ÉPKO, 148–153.
TAO, L. – HARLEY, R.A. (2014): Changes in fine particulate matter measurement methods and ambient concentrations in California. Atmospheric Environment 98, 676–684. https://doi.org/10.1016/j
WHO (2021): WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization 21, 73-139.
WIESER, A.A. – SCHERZ, M. – PASSER, A. – KREINER, H. (2021): Challenges of a Healthy Built Environment: Air Pollution in Construction Industry. Sustainability 13(18), 10469. https://doi.org/10.3390/su131810469
YAN, H. – LI, Q. – FENG, K. – ZHANG, L. (2023): The characteristics of PM emissions from construction sites during the earthwork and foundation stages: an empirical study evidence. Environmental Science and Pollution Research 30(22), 62716–62732. https://doi.org/10.1007/s11356-023-26494-4
YANG, J. – YU, Q. – GONG, P. (2008): Quantifying air pollution removal by green roofs in Chicago. Atmospheric Environment 42(31), 7266–7273. https://doi.org/10.1016/j.atmosenv.2008.07.003
ZHANG, B. – JIAO, L. – XU, G. – ZHAO, S. – TANG, X. – ZHOU, Y. – GONG, C. (2018): Influences of wind and precipitation on different-sized particulate matter concentrations (PM2.5, PM10, PM2.5–10). Meteorology and Atmospheric Physics 130, 383–392. https://doi.org/10.1175/JAM2437.1
ZHANG, X. – SHEN, L. – ZHANG, L. (2013): Life cycle assessment of the air emissions during building construction process: A case study in Hong Kong. Renewable and Sustainable Energy Reviews 17, 160–169. https://doi.org/10.1016/j.rser.2012
ZHAO, X. – SUN, Y. – ZHAO, C. – JIANG, H. (2020): Impact of Precipitation with Different Intensity on PM2.5 over Typical Regions of China. Atmosphere 11(9), 906. https://doi.org/10.3390/atmos11090906
ZHU, X. – LIU, Y. – CHEN, Y. – YAO, C. – CHE, Z. – CAO, J. (2015): Maternal exposure to fine particulate matter (PM2.5) and pregnancy outcomes: a meta-analysis. Environmental Science and Pollution Research 22, 3383–3396. https://doi.org/10.1007/s11356-014-3458-7
EURÓPAI UNIÓ TANÁCSA (2023): Levegőminőség: a Tanács véglegesen jóváhagyta az uniós előírások szigorítását. elérhető: https://www.consilium.europa.eu/hu/press/press-releases/2024/10/14/air-quality-council-gives-final-green-light-to-strengthen-standards-in-the-eu/ Letöltés dátuma: 2024. 10. 20.
4/2011. (I. 14.) VM rendelet a levegőterheltségi szint határértékeiről és a helyhez kötött légszennyező pontforrások kibocsátási határértékeiről, elérhető: https://net.jogtar.hu/jogszabaly?docid=A1100004.VM#lbj35id7b68 Letöltés dátuma: 2024.10.10.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Journal of Central European Green Innovation
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.