Mathematical Modelling of Heating With Renewable Energy in a Solar Pot

Authors

  • Márton Rátkai Magyar Agrár- és Élettudományi Egyetem, Műszaki Tudományi Doktori Iskola
  • Richárd Kicsiny Magyar Agrár- és Élettudományi Egyetem
  • László Székely Magyar Agrár- és Élettudományi Egyetem

DOI:

https://doi.org/10.33038/jcegi.6369

Keywords:

solar energy, solar pot, mathematical modelling, simulation

Abstract

The subject of this research is the solar pot, a new invention. It became protected at the Hungarian Intellectual Property Office as a utility model (patent number 5489) in 2021. The solar pot can be used to cook food or heat liquids. It has a similar jacketed structure to a tube-in-tube heat exchanger. It has an outer jacket and an inner cooking space. The solar pot has been manufactured but not tested yet through modelling and simulation or with measurements or experiments. These kind of examinations represent a completely new field of research. This paper aims to create a mathematical model for the solar pot, which allows the calculation of the pot's temperature. The modelling and the first results of the simulation based on it are presented. Based on the results, conclusions can be drawn regarding the applicability and efficiency of the solar pot. The environmentally friendly pot can perform cooking tasks. Its use reduces carbon dioxide emission by 247 g on one cooking occasion. Future research plans include assembling an experimental solar pot and solar collector system and creating additional models of the system and the system elements. Measurements will be made on the experimental system under different conditions, which allows the assessment of the applicability and functionality of the pot and the validation of the mathematical models.

Author Biographies

  • Márton Rátkai, Magyar Agrár- és Élettudományi Egyetem, Műszaki Tudományi Doktori Iskola

    Rátkai Márton
    PhD hallgató
    Műszaki Tudományi Doktori Iskola, Magyar Agrár- és Élettudományi Egyetem,
    2100 Gödöllő, Páter Károly utca 1.
    ratkai.marton.3@phd.uni-mate.hu

  • Richárd Kicsiny, Magyar Agrár- és Élettudományi Egyetem

    Dr. Kicsiny Richárd
    egyetemi docens
    Magyar Agrár- és Élettudományi Egyetem,
    2100 Gödöllő, Páter Károly utca 1.
    kicsiny.richard@ uni-mate.hu

  • László Székely, Magyar Agrár- és Élettudományi Egyetem

    Dr. Székely László
    egyetemi docens
    Magyar Agrár- és Élettudományi Egyetem,
    2100 Gödöllő, Páter Károly utca 1.
    szekely.laszlo@uni-mate.hu

References

BADESCU, V. (2008): Optimal control of flow in solar collector systems with fully mixed water storage tanks, Energy Conversion and Management, Volume 49, Issue 2, pp. 169-184, https://doi.org/10.1016/j.enconman.2007.06.022

BIGELOW, A. W. – TABATCHNICK, J. – HUGHES, C. (2024): Testing Solar Cookers for Cooking Efficiency, Solar Energy Advantages, pp. 1-7, https://doi.org/10.1016/j.seja.2024.100053

BRADLEY, J. (2010): Counterflow, crossflow and cocurrent flow heat transfer in heat exchangers: Analytical solution based on transfer units, Heat and Mass Transfer, Volume 46, pp. 381-394, https://doi.org/10.1007/s00231-010-0579-5

BRUS, L. – ZAMBRANO, D. (2010): Black-box identification of solar collector dynamics with variant time delay, Control Engineering Practice, Volume 18, pp. 1133-1146, https://doi.org/10.1016/j.conengprac.2010.06.006

BUZÁS J. – FARKAS I. (2000): Solar domestic hot water system simulation using blockoriented software, The 3rd ISES-europe Solar World Congress (Eurosun 2000), CD-ROM Proceedings, København, Dánia, pp. 1-9

BUZÁS J. – FARKAS I. – BIRÓ A. – NÉMETH R. (1998): Modelling and simulation aspects of a solar hot water system, Mathematics and Computers in Simulation, Volume 48, pp. 33-46, https://doi.org/10.1016/S0378-4754(98)00153-0

CAO, E. (2010): Heat Transfer in Process Engineering, 1st Edition, McGraw-Hill Education, ISBN: 9780071624084

CASTELLANOS, L. S. M. – NOGUERA, A. L. G. – VELÁSQUEZ, E. I. G. – CABALLERO, G. E. C. – LORA, E. E. S. – COBAS, V. R. M. (2020): Mathematical modeling of a system composed of parabolic trough solar collectors integrated with a hydraulic energy storage system, Energy, Volume 208, pp. 1-16, https://doi.org/10.1016/j.energy.2020.118255

DANLEY, D. (2019): How much energy does it take to cook food?, https://sunspotpv.com/how-much-energy-does-it-take-to-cook-food/ (utolsó elérés: 2024.07.08.)

FARKAS I. (2003): Napenergia a mezőgazdaságban, Mezőgazda Lap- és Könyvkiadó Kft., Budapest

GÉCZI G. – KICSINY R. (FELTALÁLÓK); MAGYAR AGRÁR- ÉS ÉLETTUDOMÁNYI EGYETEM (JOGOSULT) (2021): Berendezés étel napsugárzási energiával történő készítésére és/vagy folyadék melegítésére, Használati mintaoltalom, Szellemi Tulajdon Nemzeti Hivatala, lajstromszám: 5489

GÉCZI G. – KICSINY R. – KORZENSZKY P. (2019): Modified effectiveness and linear regression based models for heat exchangers under heat gain/loss to the environment, Heat and Mass Transfer, Volume 55, pp. 1167-1179, https://doi.org/10.1007/s00231-018-2495-z

GÉCZYNÉ VÍG P. (2007): Napkollektoros rendszerek modellezése neurális hálóval, Doktori értekezés, Szent István Egyetem, Gödöllő

GETNET, M. Y. – GUNJO, D. G. – SINHA, D. K. (2023): Experimental investigation of thermal storage integrated indirect solar cooker with and without reflectors, Results in Engineering, Volume 18, pp. 1-14, https://doi.org/10.1016/j.rineng.2023.101022

GHABOUR, R. – JOSIMOVIĆ, LJUBIŠA – KORZENSZKY, P. (2021): Two Analytical Methods for Optimising Solar Process Heat System Used in a Pasteurising Plant, Applied Engineering Letters, Volume 6, No. 4, pp. 166-174, https://doi.org/10.18485/aeletters.2021.6.4.4

GHABOUR, R. – KORZENSZKY, P. (2020): Mathematical modelling and experimentation of soy wax PCM solar tank using response surface method, Analecta Technica Szegedinensia, Volume 14, No. 2, pp. 35-42, https://doi.org/10.14232/analecta.2020.2.35-42

GHABOUR, R. – KORZENSZKY, P. (2023): Dynamic Modelling and Experimental Analysis of Tankless Solar Heat Process System for Preheating Water in the Food Industry, Acta Polytechnica Hungarica, Volume 20, No. 4, pp. 65-83, https://doi.org/10.12700/APH.20.4.2023.4.4

GUPTA, P. K. – MISAL, A. – AGRAWAL, S. (2021): Development of low cost reflective panel solar cooker, Materialstoday: Proceedings, Volume 45, Part 2, pp. 1-4, https://doi.org/10.1016/j.matpr.2020.12.004

HILMER, F. – VAJEN, K. – RATKA, A. – ACKERMANN, H. – FUHS, W. – MELSHEIMER, O. (1999): Numerical solution and validation of a dynamic model of solar collectors working with varying fluid flow rate, Solar Energy, Volume 65, Issue 5, pp. 305-321, https://doi.org/10.1016/S0038-092X(98)00142-X

HIRIS, D. P. – POP, O. G. – BALAN, M. C. (2022): Analytical modeling and validation of the thermal behavior of seasonal storage tanks for solar district heating, Energy Reports, Volume 8, Supplement 9, pp. 741-755, https://doi.org/10.1016/j.egyr.2022.07.113

HOSSEINZADEH, M. – FAEZIAN, A. – MIRZABABAEE, S. M. (2020): Parametric analysis and optimization of a portable evacuated tube solar cooker, Energy, Volume 194, pp. 1-12, https://doi.org/10.1016/j.energy.2019.116816

HOSSEINZADEH, M. – SADEGHIRAD, R. – ZAMANI, H. – KIANIFAR, A. – MIRZABABAEE, S. M. (2021): The performance improvement of an indirect solar cooker using multi-walled carbon nanotube-oil nanofluid: An experimental study with thermodynamic analysis, Renewable Energy, Volume 165, Part 1, pp. 14-24, https://doi.org/10.1016/j.renene.2020.10.078

HOTTEL, H. C. – WHILLIER, A. (1955): Evaluation of flat-plate collector performance, Trans. Conf. Use of Solar Energy, Volume 3, Part 2

HOTTEL, H. C. – WOERTZ, B.B. (1942): The performance of flat-plate solar-heat collectors, Transactions of the American Society of Mechanical Engineers, Volume 64, pp. 91-104

HUSSEIN, H. M. S. – EL-GHETANY, H. H. – NADA, S. A. (2008): Experimental investigation of novel indirect solar cooker with indoor PCM thermal storage and cooking unit, Energy Conversion and Management, Volume 49, Issue 8, pp. 2237-2246, https://doi.org/10.1016/j.enconman.2008.01.026

IRANMANESH, M. – AKHIJAHANI, H. S. – JAHROMI, M. S. B. (2020): CFD modeling and evaluation the performance of a solar cabinet dryer equipped with evacuated tube solar collector and thermal storage system, Renewable Energy, Volume 145, pp. 1192-1213, https://doi.org/10.1016/j.renene.2019.06.038

KALOGIROU, S. A. – PANTELIOU, S. – DENTSORAS, A. (1999): Modeling of Solar Domestic Water Heating Systems Using Artificial Neural Networks, Solar Energy, Volume 65, pp. 335-342, https://doi.org/10.1016/S0038-092X(99)00013-4

KICSINY R. (2014): Multiple linear regression based model for solar collectors, Solar Energy, Volume 110, pp. 496-506, https://doi.org/10.1016/j.solener.2014.10.003

KICSINY R. (2018): Black-box model for solar storage tanks based on multiple linear regression, Renewable Energy, Volume 125, pp. 857-865, https://doi.org/10.1016/j.renene.2018.02.037

KUMAR, R. – ADHIKARI, R. S. – GARG, H. P. – KUMAR, A. (2001): Thermal performance of a solar pressure cooker based on evacuated tube solar collector, Applied Thermal Engineering, Volume 21, Issue 16, pp. 1699-1706, https://doi.org/10.1016/S1359-4311(01)00018-7

LAMRANI, B. – ELMRABET, Y. – MATHEW, I. – BEKKIOUI, N. – ETIM, P. – CHAHBOUN, A. – DRAOUI, A. – NDUKWU, M. C. (2022): Energy, economic analysis and mathematical modelling of mixed-mode solar drying of potato slices with thermal storage loaded V-groove collector: Application to Maghreb region, Renewable Energy, Volume 200, pp. 48-58, https://doi.org/10.1016/j.renene.2022.09.119

MAO, C. – LI, M. – LI, N. – SHAN, M. – YANG, X. (2019): Mathematical model development and optimal design of the horizontal all-glass evacuated tube solar collectors integrated with bottom mirror reflectors for solar energy harvesting, Applied Energy, Volume 238, pp. 54-68, https://doi.org/10.1016/j.apenergy.2019.01.006

NOWTRICITY (2024): Emissions in Hungary, https://www.nowtricity.com/country/hungary/ (utolsó elérés 2024.07.08.)

PACIO, J. C. – DORAO, C. A. (2011): A review on heat exchanger thermal hydraulic models for cryogenic applications, Cryogenics, Volume 51, Issue 7, pp. 366-379, https://doi.org/10.1016/j.cryogenics.2011.04.005

RUIVO, C. R. – COCCIA, G. – DI NICOLA, G. – CARRILLO-ANDRÉS, A. – APAOLAZA-PAGOAGA, X. (2022): Standardised power of solar cookers with a linear performance curve following the Hottel-Whillier-Bliss formulation, Renewable Energy, Volume 200, pp. 1202-1210 , https://doi.org/10.1016/j.renene.2022.10.041

SAINI, P. – PANDEY, S. – GOSWAMI, S. – DHAR, A. – MOHAMED, M. E. – POWAR, SATVASHEEL (2023): Experimental and numerical investigation of a hybrid solar thermal-electric powered cooking oven, Energy, Volume 280, pp. 1-12, https://doi.org/10.1016/j.energy.2023.128188

SAXENA, A. – AGARWAL, N. (2018): Performance characteristics of a new hybrid solar cooker with air duct, Solar Energy, Volume 159, pp. 628-637, https://doi.org/10.1016/j.solener.2017.11.043

SAXENA, A. – CUCE, E. – TIWARI, G. N. – KUMAR, A. (2020): Design and thermal performance investigation of a box cooker with flexible solar collector tubes: An experimental research, Energy, Volume 206, pp. 1-15, https://doi.org/10.1016/j.energy.2020.118144

SCHWARZER, K. – KRINGS, T. (1996): Demonstrations- und Feldtest von Solarkochern mit temporärem Speicher in Indien und Mali, Abschlussbericht

USDA (FOOD SAFETY AND INSPECTION SERVICE, U.S. DEPARTMENT OF AGRICULTURE) (2024): Safe Minimum Internal Temperature Chart, https://www.fsis.usda.gov/food-safety/safe-food-handling-and-preparation/food-safety-basics/safe-temperature-chart (utolsó elérés 2024.07.08.)

ZAVALA-RÍO, A. – SANTIESTEBAN-COS, R. (2007): Reliable compartmental models for double-pipe heat exchangers: An analytical study, Applied Mathematical Modelling, Volume 31, Issue 9, pp. 1739-1752, https://doi.org/10.1016/j.apm.2006.06.005

ZHAO, Y. – ZHENG, H. – SUN, B. – LI, C. – WU, Y. (2018): Development and performance studies of a novel portable solar cooker using a curved Fresnel lens concentrator, Solar Energy, Volume 174, pp. 263-272, https://doi.org/10.1016/j.solener.2018.09.007

ZHENG, J. – FEBRER, R. – CASTRO, J. – KIZILDAG, D. – RIGOLA, J. (2023): A new high-performance flat plate solar collector. Numerical modelling and experimental validation, Applied Energy, Volume 355, pp. 1-14, https://doi.org/10.1016/j.apenergy.2023.122221

ZHOU, C. – WANG, Y. – LI, J. – MA, X. – LI, Q. – YANG, M. – ZHAO, X. – ZHU, Y. (2023): Simulation and economic analysis of an innovative indoor solar cooking system with energy storage, Solar Energy, Volume 263, pp. 1-15, https://doi.org/10.1016/j.solener.2023.111816

ZOHURI, B. (2017): Compact Heat Exchangers, Selection, Application, Design and Evaluation, Springer International Publishing, Switzerland, https://doi.org/10.1007/978-3-319-29835-1

Published

2024-11-28

Issue

Section

Cikk szövege

How to Cite

Mathematical Modelling of Heating With Renewable Energy in a Solar Pot. (2024). Journal of Central European Green Innovation, 12(1-2), 87-100. https://doi.org/10.33038/jcegi.6369