Mathematical Modelling of the Internal and External Piping Configurations Effect on the Solar Thermal System
DOI:
https://doi.org/10.33038/jcegi.4954Keywords:
Solar Thermal system, pipe diameter, insulation, glycol ratio, pipe lenghtAbstract
Countless types of renewable energy can easily be exploited like wind, biomass, and solar. The most common power is solar power; it is usually used to get various outputs like electricity generation by photovoltaic/thermal power plants and local water heating. The task is to introduce environmentally friendly technologies, so the government authorities worldwide motivate the use of solar domestic water heating for its primary usage, low upkeep requirements, and the efficiency of the solar heating systems. Domestic solar hot water units, if effectively designed, are competent in providing most hot water demands in an appropriate environment and cost-effective approach. Despite 50 years of development, business technology has certainly not yet achieved substantive market penetration instead of mainstream electric power and gas alternatives. Various stakeholders will consider solar power heating systems utilised in buildings as an attractive alternative to traditional space and water heating methods. However, their functionality depends on climatic conditions, typical water heating requirements, and even operational parameters that could provide chances for performance optimisation. This study aims to analyse the effect of piping parameters on the solar system in the city of Budapest, Hungary using two programs, T*SOL as a solar system simulator and R-Studio as coding software. The analysis uses the simple model of the solar water heating system considering the following factors (pipe diameters, internal length, external length, Glycol, Thickness, volume flow rate, insulation), aiming to study the effect of the internal and external piping system. The study is carried out by simultaneously changing the values of the variables mentioned above by applying linear modelling and changing the collector type to choose the most appropriate system from the solar fraction aspect.
References
DUFFIE, J.A. – BECKMAN, W.A. (2013). Solar Engineering of Thermal Processes. John Wiley & Sons, Inc. 910 p. https://doi.org/10.1002/9781118671603
GÉCZI, G. – BENSE, L. – KORZENSZKY, P. (2014). Water Tempering of Pools Using Air to Water Heat Pump Environmental Friendly Solution. Rocznik Ochrona Srodowiska 16, 115–128. Available at: https://ros.edu.pl/images/roczniki/2014/pp_2014_01_07.pdf
GÉCZI, G. – KICSINY, R. – KORZENSZKY, P. (2019) Modified effectiveness and linear regression based models for heat exchangers under heat gain/loss to the environment. Heat and Mass Transfer 55, 1167–1179. https://doi.org/10.1007/s00231-018-2495-z
GÉCZI, G. – KORZENSZKY, P. – BENSE, L. (2013a). Ideális körülmények a levegő-víz hőszivattyú uszodatechnikai alkalmazása során. Magyar Épületgépészet 62(7–8): 7–10.
GÉCZI, G. – KORZENSZKY, P. – SZABÓ, T. – BENSE, L. – URBÁNYI, B. (2013b). Levegő-víz hőszivattyú alkalmazásának lehetősége az intenzív recirkulációs haltenyésztési rendszerben. Animal Welfare Etológia és Tartástechnológia / Animal Welfare Ethology and Housing Systems 9(3): 139–146.
GHABOUR, R. – JOSIMOVIĆ, L. – KORZENSZKY, P. (2021). Two Analytical Methods for Optimising Solar Process Heat System Used in a Pasteurising Plant. Applied Engineering Letters: Journal of Engineering and Applied Sciences 6(4): 166–174. https://doi.org/10.18485/aeletters.2021.6.4.4
GHABOUR, R. – KORZENSZKY, P. (2022). Linear model of DHW system using response surface method approach. Tehnicki Vjesnik 29(1): 66–72. https://doi.org/10.17559/TV-20201128095138
GHABOUR, R. – KORZENSZKY, P. (2021). Technical and non-technical difficulties in solar heat for industrial process. Acta Technica Corviniensis – Bulletin of Engineering 14(3): 8p. Available at: https://acta.fih.upt.ro/pdf/2021-3/ACTA-2021-3-01.pdf
GOJAK, M. – LJUBINAC, F. – BANJAC, M. (2019). Simulation of solar water heating system. FME Transactions 47 (1): 1–6. https://doi.org/10.5937/fmet1901001G
KORZENSZKY, P.E. – GÉCZI, G. (2012). Heat Pump Application in Food Technology. Journal of Microbiology, Biotechnology and Food Sciences 2(2): 493–500. Available at: https://office2.jmbfs.org/index.php/JMBFS/article/view/7157/1381
LI, Q. – TEHRANI, SSM. – TAYLOR, RA. (2017). Techno-economic analysis of a concentrating solar collector with built-in shell and tube latent heat thermal energy storage. Energy 121: 220–237. https://doi.org/10.1016/j.energy.2017.01.023
LUFT, W. (1985). High-temperature solar thermal energy storage. International Journal of Solar Energy 3 (1): 25–40. https://doi.org/10.1080/01425918408914381
MACHOL, B. – RIZK, S. (2013). Economic value of U.S. fossil fuel electricity health impacts. Environment International 52 75–80. https://doi.org/10.1016/j.envint.2012.03.003
PATONAI, Z. – KICSINY, R. – GÉCZI, G. (2022). Multiple linear regression based model for the indoor temperature of mobile containers. Heliyon 8(12): e12098 https://doi.org/10.1016/j.heliyon.2022.e12098
PÁGER SZ. – FÖLDI L. – GÉCZI G. (2022). Matematikai modell fejlesztése és validálása lakóépületek energiaigényét befolyásoló hidraulikai kapcsolások vizsgálatára. Magyar Energetika 29(3): 14–21.
RABL, A. – SPADARO, J.V. (2016). External Costs of Energy: How Much Is Clean Energy Worth? Journal of Solar Energy Engineering, Transactions of the ASME 138(4): 040801. https://doi.org/10.1115/1.4033596
SANDEY, KK. – AGRAWAL, AK. – NIKAM, P. (2015). Solar Water Heating- Potential use in Dairy Industry. International Journal of Engineering Research & Technology. 3(20): 1–2. Available at: https://www.ijert.org/research/solar-water-heating-potential-use-in-dairy-industry-IJERTCONV3IS20005.pdf
SUMAN, S. – KHAN, MK. – PATHAK, M. (2015). Performance enhancement of solar collectors – A review. Renewable and Sustainable Energy Reviews 49: 192–210. https://doi.org/10.1016/j.rser.2015.04.087
SZÉKELY, L. – KICSINY, R. – HERMANUCZ, P. – GÉCZI, G. (2021). Explicit analytical solution of a differential equation model for solar heating systems. Solar Energy 222, 219–229. https://doi.org/10.1016/j.solener.2021.05.007
TÓTH, L. – SLIHTE, S. – ÁDÁM, B. – PETRÓCZKI, K. – KORZENSZKY, P. – GERGELY, Z. (2011). Solar Assisted Ground Source Heat Pump System, Hungarian Agricultural Engineering 23: 57–61.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.