Examination of a Mobile Platform Suitable for Production and Periodic Storage of Renewable Energy
DOI:
https://doi.org/10.33038/jcegi.4948Keywords:
hydrogen, solar panels, biogas, renwable energyAbstract
One of the largest problems of our time is the constantly growing demand for energy and its satisfaction. Humanity obtained this energy primarily by burning fossil fuels, and obtains it so even today. This is the case to be expected for a long time to come, despite of the rise of alternative energy sources. However, there is significant difference between fossil energy sources. Hydrogen and biogas, for example, have much smaller impact on the environment than traditional sources of energy. By combining these with renewable sources, such as solar energy, the environmental impact can be further reduced, and the typical problems of renewable energy sources, the temporal difference between energy production and consumption and the storage of energy, can also become manageable.
The goal of my work was to investigate the possibility of an energy-producing and energy-storing device that produces hydrogen using solar cells. After storage, this can be used alone or mixed with biogas to produce electricity in a mobile, containerized design. This allows us to store solar energy and use it in the form of electricity at any time. I examined five versions, during which I performed their energetic analysis and comparison, as well as the related economic calculations.
The large, gas mixture using version proved to be the best. It had the lowest specific cost regarding electrical power, and the second lowest regarding stored energy. Taking into account the payback time of the investment too, which was the shortest for this version, it proved to be the only version that is economically feasible at present. Its only notable drawback is that it can only be used where there is sufficient amount of biogas provided from an external source.
References
AMEZ, ISABEL – BOLONIO, DAVID – CASTELLS, BLANCA – GARCÍA-MARTÍNEZ, MARÍA JESÚS – GARCÍA-TORRENT, JAVIER – LLAMAS, BERNARDO – LORENZO, JOSÉ L. – ORTEGA, MARCELO F. (2021): Experimental Study of Biogas-Hydrogen Mixtures Combustion in Conventional Natural Gas Systems; Energy, Resources and the Environment. https://doi.org/10.3390/app11146513
ANAND, KUNDAN – KUMAR, BHAVNESH – MITTAL, ALOK PRAKASH (2023): Feasibility analysis of biogas plant for the northern plains of India, Energy for Sustainable Development, 74, 454–462. https://doi.org/10.1016/j.esd.2023.05.002
ARLT, WOLFGANG – TEICHMANN, DANIEL – WASSERSCHEID, PETER (2012): Liquid Organic Hydrogen Carriers as an efficient vector for the transport and storage of renewable energy, International Journal of Hydrogen Energy, 37(23), 18118–18132. https://doi.org/10.1016/j.ijhydene.2012.08.066
BIOENERGY CONSULT (2021): Types of Biogas Storage Systems, Elérhető: https://www.bioenergyconsult.com/biogas-storage/ Letöltés: 2023.10.22.
BÖLKÉNY ILDIKÓ – VADÁSZI Marianna (2020): Hidrogén előállításának lehetőségei, XIII. Tudomány- és Technikatörténeti Online Konferencia
BREEZE, PAUL (2018): Chapter 8 - Hydrogen Energy Storage, Power System Energy Storage Technologies, 69-77. https://doi.org/10.1016/B978-0-12-812902-9.00008-0
DOBRÁNSZKY JÁNOS – KATULA LEVENTE – VARBAI BALÁZS (2022): A hidrogén tárolásának és szállításának lehetőségei, Anyagvizsgálók lapja 2022/II.
DONG, XUEQIANG – GONG, MAOQIONG – WANG, HAOCHENG – YANG, JINGYAO (2023): Performances comparison of adsorption hydrogen storage tanks at a wide temperature and pressure zone, International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2023.03.351
FANG, ZHENCHANG – DONG, XINYU – LV, ZHAO – QIAO, XINQI – SUN, CHUNHUA – TANG, XINCHENG – WANG, LINTAO – YU, XIANGYU (2023): Study on supercritical CO2 power cycles for natural gas engine energy cascade utilization, Applied Thermal Engineering, 225. https://doi.org/10.1016/j.applthermaleng.2023.120255
GALYAS ANNA BELLA – SZUNYOG ISTVÁN (2018): Biogáz-előkészítés I., Miskolci Egyetem
GÉCZI GÁBOR – KORZENSZKY PÉTER – BENSE LÁSZLÓ (2013): Ideális körülmények a levegő-víz hőszivattyú uszodatechnikai alkalmazása során. Magyar Épületgépészet 62(7–8), 7–10. Elérhető: http://www.epgeponline.hu/lapszamok/cikk/2013/6/112 letöltés: 2023.08.22.
GÉCZI GÁBOR – BENSE LÁSZLÓ – KORZENSZKY PÉTER (2014): Water Tempering of Pools Using Air to Water Heat Pump Environmental Friendly Solution. Rocznik Ochrona Srodowiska 16, 115–128. Elérhető: https://ros.edu.pl/images/roczniki/2014/pp_2014_01_07.pdf letöltés: 2023.08.22.
GOVINDASAMY, DHANUSIYA – KUMAR, ASHWANI (2023): Experimental analysis of solar panel efficiency improvement with composite phase change materials, Renewable Energy, 212, 175–184. https://doi.org/10.1016/j.renene.2023.05.028
GUO, ENYU – HE, BO – ZHANG, JINLIANG (2023): Effects of photovoltaic panel type on optimum sizing of an electrical energy storage system using a stochastic optimization approach, Journal of Energy Storage, 72, Part D. https://doi.org/10.1016/j.est.2023.108581
GÜLZOW, E.; SCHULZE, M. (2008): Alkaline Fuel Cell, Materials for Fuel Cells. https://doi.org/10.1533/9781845694838.64
HAN, JAESU; KIM, YOUNGHYEON; YU, SANGSEOK (2023): Establishment of energy management strategy of 50 kW PEMFC hybrid system, Energy Reports, 9, 2745–2756. https://doi.org/10.1016/j.egyr.2023.01.096
HASSAN, QUSAY – ALGBURI, SAMEER – SAMEEN, AWS ZUHAIR – SALMAN, HAYDER M. – JASZCZUR, MAREK (2023): Green hydrogen: A pathway to a sustainable energy future, International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2023.08.321
HORVÁTH RÓBERT (2011): Megújuló energia 122p.
JIN, GUANGMING – QIN, LIULI – ZHU, JUN (2023): High-efficiency and cost-effective manufacturing of solar cells based on localized surface plasmonic resonance, Optical Materials, 141, 113897. https://doi.org/10.1016/j.optmat.2023.113897
KARPILOV, IGOR – PASHCHENKO, DMITRY (2023): Steam methane reforming over a preheated packed bed: Heat and mass transfer in a transient process, Thermal Science and Engineering Progress, 42, 101868. https://doi.org/10.1016/j.tsep.2023.101868
KASZA ANETT (2009): A napenergia és szélenergia alkalmazási lehetőségeinek vizsgálata hazánkban, Hadmérnök 4(2).
KLOSE, ANSELM – LANGE, HANNES – LIPPMANN, WOLFGANG – URBAS, LEON (2023): Technical evaluation of the flexibility of water electrolysis systems to increase energy flexibility: A review, International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2023.01.044
KORZENSZKY PÉTER EMŐD – GÉCZI GÁBOR (2012): Heat Pump Application in Food Technology. Journal of Microbiology, Biotechnology and Food Sciences 2(2), 493-500. Elérhető: https://office2.jmbfs.org/index.php/JMBFS/article/view/7157 letöltés: 2023.08.22.
KUMAR, S. SHIVA – LIM, HANKWON (2022): An overview of water electrolysis technologies for green hydrogen production, Energy Reports, 8, 13793–13813. https://doi.org/10.1016/j.egyr.2022.10.127
LYMBEROPOULOS, NICOLAOS – VARKARAKI, ELLI – ZOULIAS, EMMANUEL (2004): A Review on Water Electrolysis
PARK, JIYONG - WOO, JONGROUL (2023): Analyzing consumers' willingness to purchase energy-efficient appliances in response to energy price changes: Case study of South Korea, Energy Economics, 127, Part A. https://doi.org/10.1016/j.eneco.2023.107088
SHU, ZHIYONG – LIANG, WENQING – QIN, BENKE – LEI, GANG – WANG, TIANXIANG – HUANG, LEI – CHE, BANGXIANG – ZHENG, XIAOHONG – QIAN, HUA (2023): Transient flow dynamics behaviors during quick shut-off of ball valves in liquid hydrogen pipelines and storage systems, Journal of Energy Storage, 73, Part C. https://doi.org/10.1016/j.est.2023.109049
SZÉKELY LÁSZLÓ – KICSINY RICHÁRD – HERMANUCZ PÉTER – GÉCZI GÁBOR (2021): Explicit analytical solution of a differential equation model for solar heating systems. Solar Energy 222, 219–229. https://doi.org/10.1016/j.solener.2021.05.007
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.