Dilution Effect on the Investigation of Soil Organic Matter Quality in UV-VIS Spectra
DOI:
https://doi.org/10.33038/jcegi.4949Keywords:
soil organic matter, alkaline soil extract, quality, E4/6, humic acidAbstract
Soil organic matter is a factor in many areas. Its knowledge helps to develop more accurate models and to use more effective predictions and estimates. While the quantity of organic matter can be well characterised, determining soil organic matter quality is a major challenge. Several methods (mainly based on spectral analysis of organic matter extracts) have been developed, such as the E4/6 [465/665 nm] or E2/3 [250/365 nm] ratios. The ultraviolet and visible light (UV-VIS) spectra of the extracts (200-900 nm) form exponential curves, from which the ratio derived from the data measured at selected points provides information on the molecular size distribution of the organic matter (ratio of humic acids to fulvic acids). The conventional E4/6 values generally give good results for the qualitative distribution of organic matter. If the samples contain some interfering factor, conventional calculations based on the ratio of the two points can be problematic. However, our EFA (Exponential Fitting Approach) method gives much more reliable and repeatable results by fitting hundreds of points. EFA is less sensitive to dilution differences in samples, which has proven to be more reliable (or at least as good) than the conventional method. Therefore, its use can improve the accuracy and repeatability of organic matter quality determination.
References
BAGLIERI, A., IOPPOLO, A., NÉGRE, M., GENNARI, M (2007): A method for isolating soil organic matter after the extraction of humic and fulvic acids, Organic Geochem., 38(1): 140–150 pp. https://doi.org/10.1016/j.orggeochem.2006.07.007
BREMNER, J. - LEES, H. (1949). Studies on soil organic matter: Part II. The extraction of organic matter from soil by neutral reagents. The Journal of Agricultural Science, 39(3), 274–279 pp. https://doi.org/10.1017/S0021859600004214
CHEN, J., GU, B., LEBOEUF, E. J., PAN, H., DAI S. (2002): Spectroscopic characterization of the structural and functional properties of natural organic matter fractions. Chemosphere. 48, 59–68 pp. https://doi.org/10.1016/S0045-6535(02)00041-3
CHEN, Y; SENESI, N; SCHNITZER, M (1977): Information provided on humic substances by E4/E6 ratios, Soil Science Society American Journal, 41, 352–358 pp. https://doi.org/10.2136/sssaj1977.03615995004100020037x
FAO (2015): World Reference Baso of Soils. https://www.fao.org/3/i3794en/I3794en.pdf
FAO (2019): Standard operating procedure for soil organic carbon (WALKLEY-BLACK METHOD, Titration and Colorimetric Method). https://www.fao.org/3/ca7471en/ca7471en.pdf
FEKETE, I., KOTROCZÓ, ZS., VARGA, CS., VERES, ZS., TÓTH, J. A. (2011): The Effects of Detrtus Input on Soil Organic Matter Content and Carbon Dioxide Emission in a Central European Deciduous Forest, Acta Silv. Lign. Hung (7) 87–95 pp. https://doi.org/10.37045/aslh-2011-0007
FEKETE, I., FRANCIOSO, O., SIMPSON, M. J., GIOACCHINI, P., MONTECCHIO, D., BERKI, I., MÓRICZ, N., JUHOS, K., BÉNI, Á., KOTROCZÓ, ZS. (2023): Qualitative and Quantitaive Changes in Soil Organic Compounds in Central European Oak Forests with Different Annual Average Precipitation, Environments, 10(3) 48 pp. https://doi.org/10.3390/environments10030048
FÓRIZS J. NÉ, MÁTÉ F., STEFANOVITS P. (1971): Talajbonitáció-Földértékelés, Agrártudományi közlemények 30., 359–378 pp.
HARGITAI L. (1955): Összehasonlító szervesanyag-vizsgálatok különböző talajtípusokon optikai módszerekkel. Agrártudományi Egyetem Agronómiai Kar kiadványa 2. (10)
HARGITAI L. (1964): A különböző talajtípusok humuszminőségének egységes jellemzése talajgenetikai szempontból. Kísérletügyi Közlemények 57/A. (3) 115–125 pp.
HAYASE, K., - TSUBOTA, H. (1985): Sedimentary humic acid and fulvic acid as fluorescent organic materials. Geochimica et Cosmochimica Acta. 49: 159–163 pp. https://doi.org/10.1016/0016-7037(85)90200-5
HELMS, J. R., STUBBINS, A., RITCHIE, J. D., MINOR, E. C., KIEBER, D. J., MOPPER, K. (2008): Adsorption spectral slopes and slope ratios as indicator of molecular weight, source, and photobleaching of chromophobic dissolved organic matter, Limnol. Oceonogr., 53(3): 955–969 pp. http://dx.doi.org/10.2307/40058211
JAKAB, G., VANCSIK, A., FILEP, T., MADARÁSZ, B., ZACHÁRY, D., RINGER, M., UJHÁZY, N., SZALAI, Z. (2022): Soil organic matter characterisation using alkali and water extraction, and its relation to soil properties, Geoderma Regional, Volume 28, e00469, ISSN 2352-0094. https://doi.org/10.1016/j.geodrs.2021.e00469
Microcal Origin 6.0 (Microcal Software, Inc, 1991-1999)
MSZ 21470/52:1983: Talajok szervesanyag-, illetve humusztartalmának meghatározása (Determination of organic matter and humus content of soils)
NADI, M., SEDAGHATI, E., FÜLEKY, GY. (2012): Characterization of organic matter content of Hungarian agricultural soils, Acta Agronomica Hungarica 60(4), 357–366 pp. https://doi.org/10.1556/AAgr.60.2012.4.6
OHNO, T., HESS, N.J., QAFOKU, N.P. (2019), Current Understanding of the Use of Alkaline Extractions of Soils to Investigate Soil Organic Matter and Environmental Processes. Journal of Environmental Quality, 48: 1561–1564 pp. https://doi.org/10.2134/jeq2019.08.0292
SARLAKI, E., PAGHALEH, A. S., KIANMEHR, M. H., VAKILIAN, K. A. (2020): Chemical, spectral and morphological characterization of humic acids extracted and membrane purified from lignite, Chemistry&Chemical technology 14(3): 353–361 pp. https://doi.org/10.23939/chcht14.03.353
SEBŐK A., CZINKOTA, I., NYIRI, B., BOSNYÁKOVICS, G., GULYÁS, M., DÁLNOKI, A. B. (2018): A talaj szervesanyag minőségének vizsgálata UV-VIS spektrumban – az exponenciális illesztésű módszere (EFA), Növénytermelés 67: 59–71 pp.
STEFANOVITS P. (1963): Magyarország talajai. Akadémiai Kiadó. Budapest
STEVENSON, F.J., (1982): Extraction, fractionation, and general chemical composition of soil organic matter. In: Stevenson, F.J. (Ed.), Humus Chem.. Genesis, Composition, Reactions. John Wiley & Sons, N. Y. 26–54 pp.
TYURIN, I. V. (1931): "Novoye vidoizmeneniye ob “yemnogo metoda opredeleniya gumusa s pomoshch’yu khromovoy kisloty." Pochvovedeniye 6: 36–47 pp.
VÁGI F. (1970): Az aranykorona érték és a termőföld minősítés. Pénzügyi Szemle, 7. szám
WALKLEY, A.J. - BLACK, I.A. (1934): Estimation of soil organic carbon by the chromic acid titration method. Soil Sci. 37, 29–38 pp.
WANG, G-S., HSIEH, S-T. (2001): Monitoring natural organic matter in water with scanning spectrophotometer. Environment International. 26: 205–212 pp. https://doi.org/10.1016/S0160-4120(00)00107-0
YACOBI, Y.Z., ALBERTS, J. J. TAKÁCS, M., MCELVAINE, M. (2003): Adsorption spectroscopy of colored dissolved organic carbon in Georgia (USA) rivers: the impact of molecular size distribution. J. Limnol. 62(1): 41–46 pp. https://doi.org/10.4081/jlimnol.2003.41
YAN, M., KORSHIN, G., WANG, D., CAI, Z. (2012): Characterization of dissolved organic matter using HPLC-SEC with a multiple wavelength absorbance detector. Chemosphere. 87: 879–885 pp. https://doi.org/10.1016/j.chemosphere.2012.01.029
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.