Verification of Energy Efficiency as a Function of the Control Mode of a Residential Heating System, Modelled in a MATLAB SIMULINK Environment

Authors

  • Szabolcs Páger Magyar Agrár- és Élettudományi Egyetem, Műszaki Tudományi Doktori Iskola
  • Gábor Géczi Magyar Agrár- és Élettudományi Egyetem, Környezettudományi Intézet
  • László Földi Magyar Agrár- és Élettudományi Egyetem, Műszaki Intézet

DOI:

https://doi.org/10.33038/jcegi.4850

Keywords:

simulation, heat control, energy saving, optimization

Abstract

Efficient control of the heating system in residential buildings is of outstanding importance for energy efficiency, comfort, and emissions reduction. The use of mathematical modelling and simulation allows for the investigation and optimization of various heating control modes. During the study, we developed mathematical models to describe different control modes of the heating system in residential buildings. The most commonly used modes were constant setpoint control, variable setpoint control, weather-compensation control, and PID control. Among these, we compared the constant setpoint On/Off thermostat control with the variable setpoint control based on normal and reduced temperature time programs.
Based on the models, we analysed the effectiveness and energy-saving potential of these two different control modes. The simulations were conducted using meteorological measurement data. The results showed that the variable setpoint control leads to 8,4% energy saving with minimal or negligible decrease in comfort, thus ensuring lower emissions.
It can be concluded that through mathematical modelling and simulation, it is possible to conduct detailed examinations and comparisons of the heating system control modes in residential buildings. Based on the findings, designers and engineers can develop more efficient and sustainable heating solutions for residential buildings.

Author Biographies

  • Szabolcs Páger, Magyar Agrár- és Élettudományi Egyetem, Műszaki Tudományi Doktori Iskola

    Páger Szabolcs
    PhD. hallgató
    Műszaki Tudományi Doktori Iskola, Magyar Agrár- és Élettudományi Egyetem, 2100 Gödöllő, Páter Károly utca 1.
    szabolcs.pager@gmail.com

  • Gábor Géczi, Magyar Agrár- és Élettudományi Egyetem, Környezettudományi Intézet

    Dr. Géczi Gábor PhD
    habilitált egyetemi docens
    Környezettudományi Intézet, Környezetanalitikai és Környezettechnológiai Tanszék,
    Magyar Agrár- és Élettudományi Egyetem, 2100 Gödöllő, Páter Károly utca 1.
    geczi.gabor@uni-mate.hu

  • László Földi, Magyar Agrár- és Élettudományi Egyetem, Műszaki Intézet

    Dr. Földi László PhD
    tanszékvezető, egyetemi docens
    Műszaki Intézet, Mechatronikai Tanszék, Magyar Agrár- és Élettudományi Egyetem, 2100 Gödöllő, Páter Károly utca 1.
    foldi.laszlo@uni-mate.hu

References

AKAN, A.P. – AKAN, A.E. (2021): Modeling on CO2 emissions via optimum insulation thickenss of residential buildings. Clean Technologies and Environmental Policy, 24, 949–967. https://doi.org/10.1007/s10098-021-02233-6

ALI, M. (2020): The PID comparsion simulation with SOSMF control and efficient indoor thermal comfort control in HVAC System. Student Conference on Research and Development/IEEE. elérhető: https://www.researchgate.net/publication/338386124 letöltés: 2023.07.25.

BALALI, Y. – CHONG, A. – BUSCH, A. – O’KEEFE, S.G. (2023): Energy modelling and control of building heating and cooling systems with data-driven and hybrid models-A review. Renewable and Sustainable Energy Reviews, 183. https://doi.org/10.1016/j.rser.2023.113496

BORODINECS, A. – ZEMITIS, J. – PALCIKOVSKIS, A. – ARDAVS, A. – LAVENDELIS E. (2023): Review of modern demand control solutions and technologies for HVAC operation. E3S Web of Conferences, 396, 02020. https://doi.org/10.1051/e3sconf/202339602020

FELIMBAN, A. – KNAACK, U. – KONSTANTINOU, T. (2023): Evaluating Savings Potentials Using Energy Retrofitting Measures for a Residential Building in Jeddah, KSA. Buildings, 13(7) 1645. https://doi.org/10.3390/buildings13071645

FUAD, A.A. – KHAN, S.U. – MYNUDDIN, M. (2023): Fuzzy Logic Control Method of HVAC Equipment for Optimization of Occupants’ Thermal Comfort in Apartment. Noble International Journal of Scientific Research, 7(1), 08–18. elérhető: www.napublisher.org letöltés: 2023.04.11.

GHABOUR, R. – JOSIMOVIC, L. – KORZENSZKY, P. (2021): Two Analytical Methods for Optimising Solar Process Heat System Used in a Pasteurising Plant. Applied Engineering Letters, 6(4), 166–174. https://doi.org/10.18485/aeletters.2021.6.4.4

GHABOUR, R. – KORZENSZKY, P. (2020): Mathematical modelling and experimentation of soy wax PCM solar tank using response surface method. Analecta Technica Szegedinensia, 14(2), 35–42. https://doi.org/10.14232/analecta.2020.2.35-42

GHABOUR, R. – KORZENSZKY, P. (2021): Effect of in series and in parallel flow heater configuration of solar heat system for industrial processes. Science, Technology and Innovation, 14(3-4), 18–26. https://doi.org/10.55225/sti.315

GHABOUR, R. – KORZENSZKY, P. (2022): Linear Model of DHW System Using Response Surface Method Approach. Technicki Vjesnik, 29(1), 66–72. https://doi.org/10.17559/TV-20201128095138

GHABOUR, R. – KORZENSZKY, P. (2023): Dynamic Modelling and Experimental Analysis of Tankless Solar Heat Process System for Preheating Water in the Food Industry. Acta Polytechnica Hungarica, 20(4), 65–83. https://doi.org/10.12700/APH.20.4.2023.4.4

HERMANUCZ, P. – BENÉCS, J. – BARÓTFI, I. (2022): Levegő hőforrású hőszivattyú leolvasztási ciklusának energetikai vizsgálata. Magyar Épületgépészet, 71(1–2), 7–12.

INTERNATIONAL ENERGY AGENCY (2018): A hat legnagyobb CO2 kibocsátó végfelhasználás Magyarországon 2017-ben elérhető: https://www.iea.org/ letöltés: 2023. 05.15.

KHAIRI, M. – JAAPAR, A. – YAHYA, Z. (2017): The application, benefits and challanges of retrofitting the existing buildings. Materials Science and Engineering 271, 012030. https://doi.org/10.1088/1757-899X/271/1/012030

MOON, H. – HYUN, C. – HONG, T. (2014): Prediction Model of CO2 Emission for Residential Buildings in South Korea. Journal of Management in Engineering, 30(3), 04014001 https://doi.org/10.1061/(ASCE)ME.1943-5479.0000228

MAWSON, V.J. – HUGHES, B.R. (2021): Coupling simulation with artificial neural networks for the optimisation of HVAC controls in manufacturing environments. Optimization and Engineering, 22, 103–119. https://doi.org/10.1007/s11081-020-09567-y

PALLONETTO, F. – ROSA, M.D. – FINN, D.P. (2020): Environmental and economic benefits of building retrofit measures for the residential sector by utilising sensor data and advanced calibrated models. Advanced in Building Energy Research, 16(1), 89–117. https://doi.org/10.1080/17512549.2020.1801504

PÁGER, S. – FÖLDI, L. – GÉCZI, G. (2022): Creation and validation of simplified mathematical model for residential building energy analysis in matlab environment. Mechanical Engineering Letters, 22, 26–42. elérhető: https://uni-mate.hu/documents/315606/3131614/MEL_2022_vol22.pdf

RICHTER, P. – ABIDA, A. (2022): HVAC control in buildings using neural network. Journal of Building Engineering, 65, 105558. https://doi.org/10.1016/j.jobe.2022.105558

Published

2023-10-17

Issue

Section

Cikk szövege

How to Cite

Verification of Energy Efficiency as a Function of the Control Mode of a Residential Heating System, Modelled in a MATLAB SIMULINK Environment. (2023). Journal of Central European Green Innovation, 11(2), 49-58. https://doi.org/10.33038/jcegi.4850