The Effect of Biochar on the Changes of Some Soil Bacterial Groups and the Development of Green Peas - in Vitro Model Experiment
DOI:
https://doi.org/10.33038/jcegi.3563Keywords:
soil biology, biochar, catalase, bacterial morfology, root nodulesAbstract
One of the major challenges of our world is the continuous decreasing soil productivity. The decreasing crop averages due to natural and anthropogenic processes necessitate the application of new agrotechnical technologies and methods. Biochar, which can be produced by the pyrolysis decomposition of organic materials, is one of the tools used worldwide to improve the water and nutrient retention capacity of soils. During the pyrolysis, the carbon content of the biomass-based raw material turns into aromatic carbon groups, and amorphous and graphitic structures, which is called biochar. Our aim was to investigate the effect of plant coal biochar on the microbiological activity- and diversity of low-humus sandy soil and on the growth of green peas (Pisum sativum L.) in an in vitro experiment. In the nine-week pot experiment, four parallel measurements were set up on increasing biochar doses (expressed in m m%) to determine the optimal concentration. The amount of bacteria that could be cultivated from the soil and the proportion of each biochemical group were examined once per week. At the end of the experiment, the mass of the biomass of the test plant (shoot + root) was determined, as well as the number of the root nodules, which change as a result of the treatments. Based on our results, some rapid biochemistry tests (catalase and oxidase) combined with the micromorphological characteristics of the cells may be suitable for detecting changes in the soil microbiome. In the examined soil, when determining the optimal amount/treatment of biochar, take attention to the different environmental needs of the plant and the microbes, since the optimum of plant biomass production did not completely overlap with the number of nitrogen-fixing root nodules.
References
CIMERMANOVA, M. – PRISTAS, P. – PIKNOVA, M. (2021): Biodiversity of Actinomycetes from heavy metal contaminated technosols. Microorganisms, 9, 1635. DOI: https://doi.org/10.3390/microorganisms9081635
EAGLESHAM, A. R., ELLIS, J. M., EVANS, W. R., FLEISCHMAN, D. E., HUNGRIA, M., & HARDY, R. W. (1990). The first photosynthetic N 2-fixing Rhizobium: characteristics. In Nitrogen fixation Springer, Boston, MA., 805–811. DOI: https://doi.org/10.1007/978-1-4684-6432-0_69
FEKETE I. – BERKI I. – LAJTHA K. – TRUMBORE S. – FRANCIOSO O. – GIOACCHINI P. – MONTECCHIO D. – VÁRBÍRÓ G. – BÉNI Á. – MAKÁDI M. – DEMETER I. – MADARÁSZ B. – JUHOS K. – KOTROCZÓ ZS. (2021): How will a drier climate change carbon sequestration in soils of the deciduous forests of Central Europe? Biogeochemistry 152: 13–32. DOI: https://doi.org/10.1007/s10533-020-00728-w
GARCÍA-RUIZ, J.M. (2010): The effects of land uses on soil erosion in Spain: A review. Catena, 81, 1–11 p. DOI: https://doi.org/10.1016/j.catena.2010.01.001
GÓTH, L. – RASS, P. – PÁY, A. (2004): Catalase enzyme mutations and their association with diseases. Molecular Diagnosis, 8, 141–149. DOI: https://doi.org/10.1007/BF03260057
GRABER, E. R. – FRENKEL, O. – JAISWAL, A. K. – ELAD, Y. (2014): How may biochar influence severity of diseases caused by soilborne pathogens?. Carbon Management, 5, 169–183. DOI: https://doi.org/10.1080/17583004.2014.913360
GUL, S. – WHALEN, J. K. – THOMAS, B. W. – SACHDEVA, V. – DENG, H. (2015): Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agriculture, Ecosystems & Environment, 206, 46–59. DOI: https://doi.org/10.1016/j.agee.2015.03.015
HADIYA, V. – POPAT, K. – VYAS, S. – VARJANI, S. – VITHANAGE, M. – GUPTA, V. K. – PATEL, Z. (2022): Biochar production with amelioration of Microwave-assisted pyrolysis: Current scenario, drawbacks and perspectives. Bioresource Technology, 127303. DOI: https://doi.org/10.1016/j.biortech.2022.127303
HAMORY, J. – KLEEMANS, M. – LI, N. Y. – MIGUEL, E. (2021): Reevaluating agricultural productivity gaps with longitudinal microdata. Journal of the European Economic Association, 19, 1522–1555. DOI: https://doi.org/10.1093/jeea/jvaa043
HARDY, B. – SLEUTEL, S. – DUFEY, J. E. – CORNELIS, J. T. (2019): The long-term effect of biochar on soil microbial abundance, activity and community structure is overwritten by land management. Frontiers in Environmental Science, 7, 110. DOI: https://doi.org/10.3389/fenvs.2019.00110
HALÁSZ J. – KOTROCZÓ ZS. – SZABÓ P. – KOCSIS T. (2022): Biomonitoring and Assessment of Dumpsites Soil Using Phospholipid Fatty Acid Analysis (PLFA) Method - Evaluation of Possibilities and Limitations. Chemosensors 10: 409. DOI: https://doi.org/10.3390/chemosensors10100409
JAYAWARDENA, R. S. – PURAHONG, W. – ZHANG, W. – WUBET, T. – LI, X. – LIU, M. – YAN, J. (2018): Biodiversity of fungi on Vitis vinifera L. revealed by traditional and high-resolution culture-independent approaches. Fungal Diversity, 90, 1–84. DOI: https://doi.org/10.1007/s13225-018-0398-4
JEFFRY, L. – ONG, M. Y. – NOMANBHAY, S. – MOFIJUR, M. – MUBASHIR, M. – SHOW, P. L. (2021): Greenhouse gases utilization: A review. Fuel, 301, 121017. DOI: https://doi.org/10.1016/j.fuel.2021.121017
KOCSIS, T. – WASS-MATICS, H. – KOTROCZÓ, ZS. – BIRÓ, B. (2015): A bioszén kedvező hatása a talaj pszikrofil-és mezofil csíraszámára. Futó, Zoltán (szerk.) A hulladékgazdálkodás legújabb fejlesztési lehetőségei. Szarvas, Magyarország, SZIE Gazdasági, Agrár-és Egészségtudományi Kar. 126 p. 63–69.
KOCSIS, T. – PABAR, S. A. – FERSCHL, B. – KOTROCZÓ, Z. – MOHÁCSI-FARKAS, C. – BIRÓ, B. (2020): Biotic and abiotic risks of soil biochar treatment for food safety and human health. Acta Univ. Sapientiae Aliment, 13, 69–84. DOI: https://doi.org/10.2478/ausal-2020-0004
KOTROCZÓ, ZS., I. – FEKETE, J. A. – TÓTH, B. – TÓTHMÉRÉSZ, S. – BALÁZSY (2008): Effect of leaf- and root-litter manipulation for carbon-dioxide efflux in forest soil. Cereal Research Communications Volume 36: 663–666. http://www.jstor.org/stable/90002791
KOTROCZÓ ZS. – FEKETE I. (2020): Significance of soil respiration from biological activity in the degradation processes of different types of organic matter. DRC Sustainable Future: Journal of Environment, Agriculture, and Energy 1: 171–179. DOI: https://doi.org/10.37281/DRCSF/1.2.10
KOVÁCS-BOKOR, É. – DOMOKOS, E. – BIRÓ, B. (2021): Toxic metal phytoextraction potential and health-risk parameters of some cultivated plants when grown in metal-contaminated river sediment of Danube, near an industrial town. Environmental Geochemistry and Health, 43, 2317–2330. DOI: https://doi.org/10.1007/s10653-021-00880-8
LEHMANN, J. – COWIE, A. – MASIELLO, C. A. – KAMMANN, C. – WOOLF, D. – AMONETTE, J. E. – WHITMAN, T. (2021): Biochar in climate change mitigation. Nature Geoscience, 14, 883–892. DOI: https://doi.org/10.1038/s41561-021-00852-8
LENG, L. – XU, X. – WEI, L. – FAN, L. – HUANG, H. – LI, J. – ZHOU, W. (2019): Biochar stability assessment by incubation and modelling: Methods, drawbacks and recommendations. Science of the Total Environment, 664, 11–23. DOI: https://doi.org/10.1016/j.scitotenv.2019.01.298
MARTOS, S. – MATTANA, S. – RIBAS, A. – ALBANELL, E. – DOMENE, X. (2020): Biochar application as a win-win strategy to mitigate soil nitrate pollution without compromising crop yields: a case study in a Mediterranean calcareous soil. Journal of Soils and Sediments, 20, 220–233. DOI: https://doi.org/10.1007/s11368-019-02400-9
MSZ-08-1721-4:1986, Szennyvízzel, szennyvíziszappal kezelt mezõgazdaságilag hasznosított területek talajvizsgálata. Talajbiológiai aktivitás vizsgálat kataláz enzimaktivitási módszerrel
MSZ-EN-ISO-4833-1:2014, Az élelmiszerlánc mikrobiológiája. Horizontális módszer a mikroorganizmusok számlálására. Telepszámlálás 30 °C-on lemezöntéses módszerrel (ISO 4833-1:2013)
PAPP, O. – KOCSIS, T. – BIRÓ, B. – JUNG, T. – GANSZKY, D. – ABOD, É. – DREXLER, D. (2021): Co-inoculation of organic potato with fungi and bacteria at high disease severity of Rhizoctonia solani and Streptomyces spp. increases beneficial effects. Microorganisms, 9, 2028. DOI: https://doi.org/10.3390/microorganisms9102028
PERMPOONPATTANA, P. – TOLLS, E. H. – NADEM, R. – TAN, S. – BRISSON, A. – CUTTING, S. M. (2011): Surface layers of Clostridium difficile endospores. Journal of bacteriology, 193, 6461-6470. DOI: https://doi.org/10.1128/JB.05182-11
SHA, J. – SUN, Y. – YU, H. – YANG, Z. – CHU, H. – WANG, Y. – XU, S. (2022): Comparison of nano-TiO2 immobilization approaches onto biochar: Superiorities of click chemistry strategy and self-acceleration of pollutant degradation. Journal of Environmental Chemical Engineering, 10, 107544. DOI: https://doi.org/10.1016/j.jece.2022.107544
TARRAND, J. J. – GRÖSCHEL, D. H. (1982): Rapid, modified oxidase test for oxidase-variable bacterial isolates. Journal of Clinical Microbiology, 16, 772–774. DOI: https://doi.org/10.1128/jcm.16.4.772-774.1982
ZHOU, Z. – GAO, T. – VAN ZWIETEN, L. – ZHU, Q. – YAN, T. – XUE, J. – WU, Y. (2019): Soil microbial community structure shifts induced by biochar and biochar‐based fertilizer amendment to Karst calcareous soil. Soil Science Society of America Journal, 83, 398–408. DOI: https://doi.org/10.2136/sssaj2018.08.0297
ZHU, X. – LI, Y. – WANG, X. (2019): Machine learning prediction of biochar yield and carbon contents in biochar based on biomass characteristics and pyrolysis conditions. Bioresource technology, 288, 121527. DOI: https://doi.org/10.1016/j.biortech.2019.121527
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Journal of Central European Green Innovation
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.