The Effect of Different Soil Cover Treatments on Soil Physical Parameters of Vineyard Plantations Exposed to Erosion
DOI:
https://doi.org/10.33038/jcegi.3562Keywords:
cover crops, climate change, soil degradation, cultivation method, soil coveringAbstract
A significant proportion of historical wine regions are located at lands faced to soil erosion. These vineyards will be exposed to more rare but more intense rainfalls according to the scenarios, so to choose the right floor management is essential. The applied methods have effect on the living soil and its activity and consequently also on soil macro-aggregate stability which is crucial for good soil structure, increasing water retention and reducing erosion. For our study we have analyzed the soil samples of a vineyard located on the southern foothill of the Badacsony hill of different treatments (FAC=phacelia, PILL=legumes mixture, FES=festuca varieties, TER=natural vegetation, TAK=mulch, BU =wheat, MEC=mechanical, TRI =triticale) by wet-sieving method. According to the results the best outcome, the highest level of aggregate stability was at the mulching method.
References
BARTHÈS, B. – ROOSE, E. (2002): Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation at several levels. Catena 47, 133–149. DOI: https://doi.org/10.1016/S0341-8162(01)00180-1
BIDDOCCU, M. – FERRARIS, S. – OPSI, F. – CAVALLO, E. (2016): Long-term monitoring of soil management effects on runoff and soil erosion in sloping vineyards in Alto Monferrato (North–West Italy). Soil and Tillage Research 155, 176–189. DOI: https://doi.org/10.1016/j.still.2015.07.005
BISSONNAIS, Y.L. – BLAVET, D. – NONI, G.D. – LAURENT, J.-Y. – ASSELINE, J. – CHENU, C. (2007): Erodibility of Mediterranean vineyard soils: relevant aggregate stability methods and significant soil variables. European Journal of Soil Science 58, 188–195. DOI: https://doi.org/10.1111/j.1365-2389.2006.00823.x
BRKLJAČA, M. – KULIŠIĆ, K. – ANDERSEN, B. (2019): Soil dehydrogenase activity and organic carbon as affected by management system. Agriculturae Conspectus Scientificus, 84(2), 135-142–142.
BUZÁS, I. (1990): Talaj- és agrokémiai vizsgálati módszerkönyv 1. A talaj fizikai, vízgazdálkodási és ásványtani vizsgálata. INDA 4231 Kiadó, Budapest. 357 pp.
CAPÓ-BAUÇÀ, S. – MARQUÉS, A. – LLOPIS-VIDAL, N. – BOTA, J. – BARAZA, E. (2019): Long-term establishment of natural green cover provides agroecosystem services by improving soil quality in a Mediterranean vineyard. Ecological Engineering 127, 285–291. DOI: https://doi.org/10.1016/j.ecoleng.2018.12.008
DUNAI, A. (2017): A szerves- és ásványi trágyázás, valamint a különböző talajművelési módok hatásainak vizsgálata egyes talajfizikai paraméterekre tartamkísérletben, in: Doktori Értekezés. DOI: https://doi.org/10.18136/PE.2017.647
FEHÉR, O. – FÜLEKY, GY. – MADARÁSZ, B. – KERTÉSZ, Á. (2011): Morphological and diagnostic properties of seven volcanic soil profiles according to the Hungarian Soil Classification and the World Reference Base for Soil Resources (WRB, 1998). Agrokémia és Talajtan 60, 131–148.
FEKETE I, – ZS. KOTROCZÓ – CS. VARGA – R. HARGITAI – K. TOWNSEND – G. CSÁNYI – G. VÁRBIRÓ (2012): Variability of organic matter inputs affects soil moisture and soil biological parameters in a European detritus manipulation experiment. Ecosystems 15:792-803. DOI: https://doi.org/10.1007/s10021-012-9546-y
FERRIS, H. – MCKENRY, M.V. (1974): Seasonal Fluctuations in the Spatial Distribution of Nematode Populations in a California Vineyard. Journal of Nematology 8.
HENDGEN, M. – HOPPE, B. – DÖRING, J. – FRIEDEL, M. – KAUER, R. – FRISCH, M. – DAHL, A. – KELLNER, H. (2018): Effects of different management regimes on microbial biodiversity in vineyard soils. Scientific Reports 8, 9393. DOI: https://doi.org/10.1038/s41598-018-27743-0
JUHOS K. – MADARÁSZ B. – KOTROCZÓ ZS. – BÉNI Á. – MAKÁDI M. – FEKETE I. (2021): Carbon sequestration of forest soils is reflected by changes in physicochemical soil indicators - A comprehensive discussion of a long-term experiment on a detritus manipulation. Geoderma 385: 114918. DOI: https://doi.org/10.1016/j.geoderma.2020.114918
KARAMI, A., – HOMAEE, M. – AFZALINIA, S. – RUHIPOUR, H. – BASIRAT, S. (2012): Organic resource management: Impacts on soil aggregate stability and other soil physico-chemical properties. Agriculture, Ecosystems & Environment 148, 22–28. DOI: https://doi.org/10.1016/j.agee.2011.10.021
KEMPER, W. D. – KOCH, E. J. (1966): Aggregate stability of soils from Western United States and Canada: Measurement procedure, correlations with soil constituents (No. 1355). Agricultural Research Service, US Department of Agriculture.
KEMPER, W.D. – ROSENAU, R.C. (1986): Aggregate Stability and Size Distribution, in: Methods of Soil Analysis. John Wiley & Sons, Ltd, pp. 425–442. DOI: https://doi.org/10.2136/sssabookser5.1.2ed.c17
KENDE, Z. – SALLAI, A. – KASSAI, K. – MIKÓ, P. – PERCZE, A. – BIRKÁS, M. (2017): The effects of tillage-induced soil disturbance on weed infestation of winter wheat. Pol. J. Environ. Stud, 26(3), 1131. DOI: https://doi.org/10.15244/pjoes/67552
KIRCHHOFF, M. – RODRIGO-COMINO, J. – SEEGER, M. – RIES, J.B. (2017): Soil erosion in sloping vineyards under conventional and organic land use managements (Saar-Mosel Valley, Germany). Cuadernos de Investigación Geográfica 43, 119–140. DOI: https://doi.org/10.18172/cig.3161
KOCSIS T. – WASS-MATICS H. – KOTROCZÓ ZS. – BIRÓ B. (2015): A bioszén kedvező hatása a talaj pszikrofil- és mezofil csíraszámára. A hulladékgazdálkodás legújabb fejlesztési lehetőségei c. konferencia kötete 63–69.
KOTROCZÓ, ZS. – KOCSIS, T. – JUHOS, K. – HALÁSZ, J. – FEKETE, I. (2022): How Does Long-Term Organic Matter Treatment Affect the Biological Activity of a Centre European Forest Soil? Agronomy 12: 2301. DOI: https://doi.org/10.3390/agronomy12102301
KOVÁCS, B. – VARGA, P. – MÁJER, J. – NÉMETH, C. – SZABÓ, P. – KOCSIS, L. (2018): Sustainable soil management in the Badacsony Wine District. Ecocycles 4, 80–84. DOI: https://doi.org/10.19040/ecocycles.v4i2.115
KOVÁCS B. – DOBOLYI C. – SEBŐK F. – KOCSIS L. – TÓTH Z. (2020): Effect of Vineyard Floor Management on Seasonal Changes of Cultivable Fungal Diversity in the Rhizosphere. Agriculture, 10(11):534. DOI: https://doi.org/10.3390/agriculture10110534
KOVÁCS, B.Z. 2021. Doktori (PhD) Értekezés. p. 130.
LIANG, H. – WANG, X. – YAN, J. – LUO, L. (2019): Characterizing the Intra-Vineyard Variation of Soil Bacterial and Fungal Communities. Front. Microbiol. 10. DOI: https://doi.org/10.3389/fmicb.2019.01239
MADARÁSZ, B. – JAKAB, G. – SZALAI, Z. – JUHOS, K. – KOTROCZÓ, Z. – TÓTH, A. – LADÁNYI, M. (2021): Long-term effects of conservation tillage on soil erosion in Central Europe: A random forest-based approach. Soil and Tillage Research, 209, 104959. DOI: https://doi.org/10.1016/j.still.2021.104959
PANAGOS, P. – BORRELLI, P. – POESEN, J. – BALLABIO, C. – MEUSBURGER, K. – MONTANARELLA, L. – LUGATO, E. – ALEWELL, C. (2015): The new assessment of soil loss by water erosion in Europe. Environmental Science & Policy 54, 438–447. DOI: https://doi.org/10.1016/j.envsci.2015.08.012
PATOCSKAI, Z. – VIDÉKI, R. – SZÉPLIGETI, M. – BIDLÓ, A. – KOVÁCS G. (2008): Talajviszonyok a Szent György-hegyen. Talajvédelem, Különszám, 639–644.
RIEDER, Á. – MADARÁSZ, B. – SZABÓ, J. A. – ZACHÁRY, D. – VANCSIK, A. – RINGER, M. – JAKAB, G. (2018): Soil organic matter alteration velocity due to land-use change: A case study under conservation agriculture. Sustainability, 10(4), 943. DOI: https://doi.org/10.3390/su10040943
RODRIGO-COMINO, J. (2018): Five decades of soil erosion research in “terroir”. The State-of-the-Art. Earth-Science Reviews 179, 436–447. DOI: https://doi.org/10.1016/j.earscirev.2018.02.014
SIEGRIST, S. – SCHAUB, D. – PFIFFNER, L. – MÄDER, P. (1998): Does organic agriculture reduce soil erodibility? The results of a long-term field study on loess in Switzerland. Agriculture, Ecosystems & Environment 69, 253–264. DOI: https://doi.org/10.1016/S0167-8809(98)00113-3
STEFANOVITS, P. – FILEP, GY. – FÜLEKY, GY. (1999): Talajtan. Mezőgazda Kiadó, Budapest. 470 pp.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Journal of Central European Green Innovation
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.