Comparison of Some Soil Enzymatic Activities in Luvisol of Conservation and Conventional Tillage in a Model Experiment

Authors

  • Priyo Adi Nugroho Hungarian University of Agriculture and Life Sciences, Institute of Environmental Science
  • Nándor Prettl Hungarian University of Agriculture and Life Sciences, Institute of Environmental Science
  • Zsolt Kotroczó Hungarian University of Agriculture and Life Sciences, Institute of Environmental Science
  • Katalin Juhos Hungarian University of Agriculture and Life Sciences, Institute of Environmental Science

DOI:

https://doi.org/10.33038/jcegi.3558

Keywords:

Labile carbon, dehydrogenase, β-glucosidase, phosphatase, mineralization

Abstract

The effect of soil tillage operation on soil biological properties has not been extensively studied in Hungary. We investigated some soil biological enzymatic activities (dehydrogenase, β-glucosidase, and phosphatase) of a Luvisol, treated by different tillage, management intensities, i.e., conservation tillage (CT), fully conventional tillage with mouldboard ploughing every year (PT), and moderately conventional tillage with shallow and deep ripping intermittently in every two years (BR). A pot experiment was carried out in climate-controlled growth chamber for six weeks as a model experiment, of using the composite soils (0-20 depth) with the three types of tillage intensity. Our finding suggested, that adding of the crop residues might increase the soil organic matter content, that is reflected by the high concentration of labile carbon in the CT soil. The greater intensified soil aeration at the conventional tillage operation, contributed to the much higher dehydrogenase activity in the PT and the BR soil. Otherwise, the higher aeration of soil resulted a decreased β-glucosidase activity in the conventional tillage (BR) soil. The high phosphorus availability of soil correlated by the lowest phosphatase enzymatic activity and the improved available P ratio in CT soil, indicating the inhibition of phosphatase activity. The soil biological enzymatic activities was shown to be affected by the presence of different substrates at the three management practices.

Author Biographies

  • Priyo Adi Nugroho, Hungarian University of Agriculture and Life Sciences, Institute of Environmental Science

    Priyo Adi Nugroho, M.Sc
    Corresponding author
    Ph.D candidate
    Department of Agro-Environmental Studies, Institute of Environmental Science,
    Hungarian University of Agriculture and Life Sciences (MATE)
    H-1118 Budapest, Villanyi u. 29-43.
    priyo.nugroho@puslitkaret.co.id

  • Nándor Prettl, Hungarian University of Agriculture and Life Sciences, Institute of Environmental Science

    Nándor Prettl, M.Sc
    Ph.D candidate
    Department of Agro-Environmental Studies, Institute of Environmental Science,
    Hungarian University of Agriculture and Life Sciences (MATE)
    H-1118 Budapest, Villanyi u. 29-43.
    nandor.prettl@gmail.com

  • Zsolt Kotroczó, Hungarian University of Agriculture and Life Sciences, Institute of Environmental Science

    Zsolt Kotroczó, Ph.D
    Associate Professor
    Department of Agro-Environmental Studies, Institute of Environmental Science,
    Hungarian University of Agriculture and Life Sciences (MATE)
    H-1118 Budapest, Villanyi u. 29-43.
    kotroczo.zsolt@gmail.com

  • Katalin Juhos, Hungarian University of Agriculture and Life Sciences, Institute of Environmental Science

    Katalin Juhos, Ph.D
    Associate Professor
    Department of Agro-Environmental Studies, Institute of Environmental Science,
    Hungarian University of Agriculture and Life Sciences (MATE)
    H-1118 Budapest, Villanyi u. 29-43.
    Juhos.Katalin@uni-mate.hu

References

AHUJA, L. R. ̶ FIEDLER, F. ̶ DUNN, G. H. ̶ BENJAMIN, J. G. ̶ GARRISON, A. (1998): Changes in Soil Water Retention Curves Due to Tillage and Natural Reconsolidation. Soil Science Society of America Journal, 62(5): 1228–1233. DOI: https://doi.org/10.2136/sssaj1998.03615995006200050011x

BILANDŽIJA, D. ̶ ZGORELEC, Ž. ̶ KISIĆ, I. (2017): Influence of tillage systems on short-term soil CO2 emissions. Hungarian Geographical Bulletin, 66(1): 29–35. DOI: https://doi.org/10.15201/hungeobull.66.1.3

BIRKAS, M. ̶ DEKEMATI, I. ̶ ZOLTÁN, K. ̶ PÓSA, B. (2017): Review of soil tillage history and new challenges in Hungary. Hungarian Geographical Bulletin, 66(1): 55–64. DOI: https://doi.org/10.15201/hungeobull.66.1.6

BIRKÁS, M. ̶ JUG, D. ̶ KISIĆ, I. (2014): Book of soil tillage. Szent Istvan University Press. 322 p.

BOGUNOVIC, I. ̶ DEKEMATI, I. ̶ BIRKAS, M. (2019): Long-term effect of soil conservation tillage on soil water content , penetration resistance , crumb ratio and crusted area. Plant, Soil and Environment. DOI: https://doi.org/10.17221/249/2019-PSE

BONGIORNO, G. ̶ BÜNEMANN, E. K. ̶ OGUEJIOFOR, C. U. ̶ MEIER, J. ̶ GORT, G. ̶ COMANS, R. ̶ MÄDER, P. ̶ BRUSSAARD, L. ̶ DE GOEDE, R. (2019). Sensitivity of labile carbon fractions to tillage and organic matter management and their potential as comprehensive soil quality indicators across pedoclimatic conditions in Europe. Ecological Indicators, 99 (September 2018): 38–50. DOI: https://doi.org/10.1016/j.ecolind.2018.12.008

BRAY, R. H. ̶ KURTZ, L. T. (1945). Determination of total, organic, and available forms of phosphorus in soils. Soil Science, 59: 39–45.

CHOUDHARY, M. ̶ SHARMA, P. C. ̶ JAT, H. S. ̶ MC DONALD, A. ̶ JAT, M. L. ̶ CHOUDHARY, S. ̶ GARG, N. (2018). Soil biological properties and fungal diversity under conservation agriculture in indo-gangetic plains of india. Journal of Soil Science and Plant Nutrition, 18(4): 1142–1156. DOI: https://doi.org/10.4067/S0718-95162018005003201

CHOWANIAK, M. ̶ GŁĄB, T. ̶ KLIMA, K. ̶ NIEMIEC, M. ̶ ZALESKI, T. ̶ ZUZEK, D. (2020). Effect of tillage and crop management on runoff, soil erosion and organic carbon loss. Soil Use Management, 36: 581–593. DOI: https://doi.org/10.1111/sum.12606

DEKEMATI, I., SIMON, B., VINOGRADOV, S., & BIRKÁS, M. (2019). The effects of various tillage treatments on soil physical properties, earthworm abundance and crop yield in Hungary. Soil and Tillage Research, 194(March), 104334. DOI: https://doi.org/10.1016/j.still.2019.104334

GIANFREDA, L. ̶ RAO, M. A. ̶ PIOTROWSKA, A. ̶ PALUMBO, G. ̶ COLOMBO, C. (2005). Soil enzyme activities as affected by anthropogenic alterations: Intensive agricultural practices and organic pollution. Science of the Total Environment, 341(1–3): 265–279. DOI: https://doi.org/10.1016/j.scitotenv.2004.10.005

IBM CORP. (2019). IBM SPSS Statistics for Windows version 27.0, Armonk, NY.

IUSS WORKING GROUP WRB. (2014). World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. In World Soil Resources Reports No. 106. FAO. DOI: https://doi.org/10.1017/S0014479706394902

JAKAB, G. ̶ MADARÁSZ, B. ̶ SZABÓ, J. A. ̶ TÓTH, A. ̶ ZACHÁRY, D. ̶ SZALAI, Z. ̶ KERTÉSZ, Á. ̶ DYSON, J. (2017). Infiltration and soil loss changes during the growing season under ploughing and conservation tillage. Sustainability (Switzerland), 9, 1726. DOI: https://doi.org/10.3390/su9101726

JUG, D. ̶ ĐURĐEVIĆ, B. ̶ BIRKÁS, M. ̶ BROZOVIĆ, B. ̶ LIPIEC, J. ̶ VUKADINOVIĆ, V. ̶ JUG, I. (2019). Effect of conservation tillage on crop productivity and nitrogen use efficiency. Soil and Tillage Research. DOI: https://doi.org/10.1016/j.still.2019.104327

JUHOS K. ̶ MADARÁSZ B. ̶ KOTROCZÓ ZS. ̶ BÉNI Á. ̶ MAKÁDI M. ̶ FEKETE I. (2021). Carbon sequestration of forest soils is reflected by changes in physicochemical soil indicators - A comprehensive discussion of a long-term experiment on a detritus manipulation. Geoderma 385: 114918. DOI: https://doi.org/10.1016/j.geoderma.2020.114918

KHAN, S. ̶ SHAH, A. ̶ NAWAZ, M. ̶ KHAN, M. (2017). Impact of different tillage practices on soil physical properties , nitrate leaching and yield attributes of maize (Zea mays L .). Journal of Soil Science and Plant Nutrition, 17(1): 240–252.

KLADIVKO, E. J. (2001). Tillage systems and soil ecology. Soil and Tillage Research, 61(1–2): 61–76. DOI: https://doi.org/10.1016/S0167-1987(01)00179-9

KOTROCZÓ ZS. ̶ KOCSIS T. ̶ JUHOS K. ̶ HALÁSZ J. ̶ FEKETE I. (2022). How Does Long-Term Organic Matter Treatment Affect the Biological Activity of a Centre European Forest Soil? Agronomy 12: 2301. DOI: https://doi.org/10.3390/agronomy12102301

LAJTHA, K. ̶ BOWDEN, R.D. ̶ CROW, S. ̶ FEKETE, I. ̶ KOTROCZÓ, ZS. ̶ PLANTE, A. ̶ SIMPSON, M. J. ̶ NADELHOFFER, K. J. (2018). The detrital input and removal treatment (DIRT) network: Insights into soil carbon stabilization. Science of the Total Environment (640–641): 1112–1120. DOI: https://doi.org/10.1016/j.scitotenv.2018.05.388

MADARÁSZ, B. ̶ BÁDONYI, K. ̶ CSEPINSZKY, B. ̶ MIKA, J. ̶ KERTÉSZ, Á. (2011). Conservation tillage for rational water management and soil conservation. Hungarian Geographical Bulletin, 60(2): 117–133.

MADARÁSZ, B. ̶ JAKAB, G. ̶ SZALAI, Z. ̶ JUHOS, K. ̶ KOTROCZÓ, Z. ̶ TÓTH, A. ̶ LADÁNYI, M. (2021). Long-term effects of conservation tillage on soil erosion in Central Europe: A random forest-based approach. Soil and Tillage Research, 209. DOI: https://doi.org/10.1016/j.still.2021.104959

MALOBANE, M. E. ̶ NCIIZAH, A. D. ̶ MUDAU, F. N. ̶ WAKINDIKI, I. I. C. (2020). Tillage, Crop Rotation and Crop Residue Management Effects on Nutrient Availability in a Sweet Sorghum-Based Cropping System in Marginal Soils of South Africa. Agronomy, 10, 776. DOI: https://doi.org/10.3390/agronomy10060776

OLANDER, L. P. ̶ VITOUSEK, P. M. (2000). Regulation of soil phosphatase and chitinase activity by N and P availability. Biogeochemistry, 49: 175–190.

PEIGNÉ, J. ̶ VIAN, J. F. ̶ PAYET, V. ̶ SABY, N. P. A. (2018). Soil fertility after 10 years of conservation tillage in organic farming. Soil and Tillage Research, 175 (September 2017): 194–204. DOI: https://doi.org/10.1016/j.still.2017.09.008

ROPER, M. M. ̶ GUPTA, V. V. S. R. ̶ MURPHY, D. V. (2010). Tillage practices altered labile soil organic carbon and microbial function without affecting crop yields. Australian Journal of Soil Research, 48(3), 274–285. DOI: https://doi.org/10.1071/SR09143

SARDANS, J. ̶ PEÑUELAS, J. (2004). Increasing drought decreases phosphorus availability in an evergreen Mediterranean forest. Plant and Soil, 267: 367–377.

SINSABAUGH, R. L. ̶ KLUG, M. J. ̶ COLLINS, H. P. ̶ YEAGER, P. E. ̶ PETERSEN, S. O. (1999). Characterizing Soil Microbial Communities. In G. P. Robertson, D. C. Coleman, C. Bledsoe, & P. Sollins (Eds.), Standard Soil Methods for Long Term Ecological Research (pp. 318–348). Oxford University Press. http://library1.nida.ac.th/termpaper6/sd/2554/19755.pdf

SINSABAUGH, R. L. ̶ LAUBER, C. L. ̶ WEINTRAUB, M. N. ̶ AHMED, B. ̶ ALLISON, S. D. ̶ CRENSHAW, C. ̶ CONTOSTA, A. R. ̶ CUSACK, D. ̶ FREY, S. ̶ GALLO, M. E. ̶ GARTNER, T. B. ̶ HOBBIE, S. E. ̶ HOLLAND, K. ̶ KEELER, B. L. ̶ POWERS, J. S. ̶ STURSOVA, M. ̶ TAKACS-VESBACH, C. ̶ WALDROP, M. P. ̶ WALLENSTEIN, M. D. ̶ … ZEGLIN, L. H. (2008). Stoichiometry of soil enzyme activity at global scale. Ecology Letters, 11: 1252–1264. DOI: https://doi.org/10.1111/j.1461-0248.2008.01245.x

SZABÓ, P. ̶ JORDAN, GY. ̶ KOCSIS, T. ̶ POSTA, K. ̶ KARDOS, L. ̶ ŠAJN, R. ̶ ALIJAGIĆ, J. (2022). Biomonitoring and assessment of toxic element contamination in floodplain sediments and soils using fluorescein diacetate (FDA) enzymatic activity measurements: evaluation of possibilities and limitations through the case study of the Drava River floodplain. Environmental Monitoring and Assessment 194: 632. DOI: https://doi.org/10.1007/s10661-022-10301-7

KWON, T. ̶ SHIBATA, H. ̶ KEPFER-ROJAS, S. ̶ SCHMIDT, I. K. ̶ LARSEN, K. S. ̶ BEIER, C ̶ BERG, B. ̶ VERHEYEN,K. ̶ LAMARQUE, J. F. ̶ HAGEDORN, F. ̶ EISENHAUER, N. ̶ DJUKIC, I. ET AL. TEACOMPOSITION NETWORK (2021). Effects of Climate and Atmospheric Nitrogen Deposition on Early to Mid-Term Stage Litter Decomposition Across Biomes. Frontiers in Forests and Global Change 4:678480. DOI: https://doi.org/10.3389/ffgc.2021.678480

VERES, Z. ̶ KOTROCZÓ, Z. ̶ MAGYAROS, K. ̶ TÓTH, J. A. ̶ TÓTHMÉRÉSZ, B. (2013). Dehydrogenase activity in a litter manipulation experiment in temperate forest soil. Acta Silvatica et Lignaria Hungarica, 9(1): 25–33. DOI: https://doi.org/10.2478/aslh-2013-0002

VEERMAN, C. ̶ PINTO CORREIA, T. ̶ BASTIOLI, C. ̶ BIRÓ, B. et al. (2020). Caring for soil is caring for life: ensure 75% of soils are healthy by 2030 for healthy food, people, nature and climate: interim report of the mission board for soil health and food, publications office. https://doi.org/10.2777/918775. EU, Directorate-General for Research and Innovation.

WANG, Z. ̶ LIU, L. ̶ CHEN, Q. ̶ WEN, X. ̶ LIU, Y. ̶ HAN, J. ̶ LIAO, Y. (2017). Conservation tillage enhances the stability of the rhizosphere bacterial community responding to plant growth. Agron. Sustain. Dev., 37(44). DOI: https://doi.org/10.1007/s13593-017-0454-6

WEAVER, M. A. ̶ ZABLOTOWICZ, R. M. ̶ KRUTZ, L. J. ̶ BRYSON, C. T. ̶ LOCKE, M. A. (2012). Microbial and vegetative changes associated with development of a constructed wetland. Ecological Indicators, 13(1): 37–45. DOI: https://doi.org/10.1016/j.ecolind.2011.05.005

WEIL, R. R. ̶ ISLAM, K. R. ̶ STINE, M. A. ̶ GRUVER, J. B. ̶ SAMSON-LIEBIG, S. E. (2003). Estimating active carbon for soil quality assessment: A simplified method for laboratory and field use. American J. Alternative Agricult., 18(1): 3–17.

WOLINSKA, A. ̶ STEPNIEWSK, Z. (2012). Dehydrogenase Activity in the Soil Environment. In R. A. Canuto (Ed.), Dehydrogenases (pp. 183–210). DOI: https://doi.org/10.5772/48294

ZHANG, Y. ̶ CHEN, L. ̶ WU, Z. ̶ SUN, C. (2011). Kinetic parameters of soil β-glucosidase. Revista Brasileira de Ciência Do Solo, 35: 1285–1291.

ZHENG, H. ̶ LIU, W. ̶ ZHENG, J. ̶ LUO, Y. ̶ LI, R. ̶ WANG, H. ̶ QI, H. (2018). Effect of long-term tillage on soil aggregates and aggregate-associated carbon in black soil of Northeast China. PLoS ONE 13(6): e0199523. DOI: https://doi.org/10.1371/journal.pone.0199523

Downloads

Published

2022-12-15

How to Cite

Comparison of Some Soil Enzymatic Activities in Luvisol of Conservation and Conventional Tillage in a Model Experiment. (2022). Journal of Central European Green Innovation, 10(Suppl 3), 3-12. https://doi.org/10.33038/jcegi.3558