Evaluation of Urban Rainwater Storage Sizing Based on Daily Meteorological Data for the 1901 – 2020 Period
DOI:
https://doi.org/10.33038/jcegi.3553Keywords:
rainwater storage, climate change, meteorology, rainwater utilization, scenarioAbstract
The study presents the investigation of rainwater reservoirs for collecting roof water from buildings, with a roof size typical for Hungarian conditions and a possible water use. The study was based on a simple model based on daily precipitation and temperature data.The model results, which took into account 120 years of data, are suitable for showing the effects of the fluctuations that have taken place in the meantime as the spontaneous fluctuations of the climate and by climate change that can be traced back to human activity. In addition, it was possible to examine some of the characteristics of each reservoir with a nominal volume. In the study, we have presented the results of rainwater collection in the case of annual (whole-year) and seasonal (frost-free) periods. The examination of an extremely large reservoir was also the subject of the study, during which the change in the irrigated area was analyzed. One of the findings of the tests is that the estimated upper limit of the optimal size of the reservoir. It was found that with the frame of the recorded input and output parameters, taking into account the meteorological data, the maximum reasonable size of the tank is around 20 m3, although the optimal volume is to be found well below this value. The utilization of greater reservoir cannot be interpreted. We also examined how the ratio of individual parameters changed over the past century. The conclusion of the study is that water retention for irrigation purposes is definitely positive. The design of a larger reservoir usually results in better indicators, but it is possible to raise the question of how the return on investment costs can be validate in the case of a household. This question should be the subject of further investigations.
References
BASHAR M. Z. – KARIM, R – IMTEAZ M. A. (2018): Reliability and economic analysis of urban rainwater harvesting: A comparative study within six major cities of Bangladesh Resources, Conservation and Recycling Volume 133, June 2018, Pages 146–154 https://doi.org/10.1016/j.resconrec.2018.01.025
BERÉNYI BERÉNYI A. – PONGRÁCZ R. – BARTHOLY J. (2021): Csapadékszélsőségek változása Európa déli alföldi régióiban az 1951–2019 időszakban. Modern Geográfia, Vol. 16, Issue 4, 2021: 85–101 DOI: https://doi.org/10.15170/MG.2021.16.04.05
CAMPISANO A. – BUTLER D. – WARD S. – BURNS M.J. – FRIEDLER E. – DEBUSK K. - FISHER-JEFFES L.N. – GHISI E. – RAHMAN A. – FURUMAI H. – HAN M. (2017): Urban rainwater harvesting systems: Research, implementation and future perspectives. Water Research Volume 115, 15 May 2017, Pages 195–209. https://doi.org/10.1016/j.watres.2017.02.056
EEKHOUT, J. P. C. – HUNINK, J. E. – TERINK, W. – DE VENTE, J. (2018): Why increased extreme precipitation under climate change negatively affects water security, Hydrol. Earth Syst. Sci., 22, 5935–5946. DOI: https://doi.org/10.5194/hess-22-5935-2018
LAKATOS M. – BIHARI Z. – SZENTIMREY T. (2014): A klímaváltozás magyarországi jelei. LÉGKÖR 59. évfolyam (2014) 158–163 pp
MOHAMMED, S. – ALSAFADI, K. – DAHER, H. – GOMBOS, B. – MAHMOOD, S. – HARSÁNYI, E. (2020): Precipitation pattern changes and response of vegetation to drought variability in the eastern Hungary. Bulletin of the National Research Centre, 44(1), 1–10. https://doi.org/10.1016/j.compag.2022.106925
OMSZ (2022): https://www.met.hu/eghajlat/eghajlatvaltozas/megfigyelt_hazai_valtozasok/homerseklet_es_csapadektrendek/csapadek_szelsosegek/ , letöltve 2022.09.30.
SZALAI J. (2011): Talajvízszint-változások az Alföldön. In: A környezeti változások és az Alföld 7. pp. 97–110. (2011) ISBN: 978-963 85437 8 3
WOLFF M.A. – ISAKSEN K. – PETERSEN-ØVERLEIR A. – ØDEMARK K. – REITAN T. – BRÆKKAN R. (2015): Derivation of a new continuous adjustment function for correcting wind-induced loss of solid precipitation: results of a Norwegian field study. Hydrol. Earth Syst. Sci., 19, 951–967. DOI: https://doi.org/10.5194/hessd-11-10043-2014
KOCHENDORFER J. – RASMUSSEN R. – WOLFF M. – BAKER B. – HALL M.E. – MEYERS T. – LANDOLT S. – JACHCIK A. – ISAKSEN K. – BRÆKKAN R. – LEEPER R. (2017): The quantification and correction of wind-induced precipitation measurement errors. Hydrol. Earth Syst. Sci., 21, 1973–1989, 2017, DOI: https://doi.org/10.5194/hess-21-1973-2017
KOCHENDORFER J. – NITU R. – WOLFF M. – MEKIS E. – RASMUSSEN R. – BAKER B. – EARLE M.E. – REVERDIN A. – KAI W. – SMITH C.D. – YANG D. – ROULET Y-A. – BUISAN S. – LAINE T. – LEE G. – ACEITUNO J.L.C. – ALASTRUÉ J. – ISAKSEN K. – MEYERS T. – BRÆKKAN R. – LANDOLT S. – JACHCIK A. – POIKONEN A. (2017): Analysis of single-Alter-shielded and unshilded measurements of mixed and solid precipitation from WMO-SPICE. Hydrol. Earth Syst. Sci., 21, 3525–3542. DOI: https://doi.org/10.5194/hess-21-3525-2017
VELASCO-MUÑOZ, JUAN F. – AZNAR-SÁNCHEZ, JOSÉ A. – BATLLES-DELAFUENTE, ANA – FIDELIBUS, MARIA DOLORES (2019): Rainwater Harvesting for Agricultural Irrigation: An Analysis of Global Research. Water 2019, 11(7), 1320; DOI: https://doi.org/10.3390/w11071320
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Journal of Central European Green Innovation
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.