Summary Assessment of Vermicomposting of Municipal Sewage Sludge
DOI:
https://doi.org/10.33038/jcegi.3511Keywords:
communal sewage sludge, vermicomposting, Eisenia foetidaAbstract
The proper management of communal sewage sludge is a priority of environmental protection. Recently the vermicomposting technology, of using earthworm species in waste management has been increasing. Earthworms are utilizing of the bacterial components of the sludge and during their metabolic processes, can contribute to the acceleration of full composting processes. In addition, vermicomposting increase the nitrogen (N), phosphorus (P) and potassium (K) content of the treated sludge, and eliminate the potential pathogens.
We examined the vermicomposting processes both in laboratory scale, in pilot scale (open- and closed environmental conditions) and among industrial composting conditions, where the compost piles were covered with straw-mulch or with geotextile and uncovered. Eisenia foetida worms were inoculated into the compost-piles. Samples were taken at the beginning, at half time and at the end of the experimental period. Physical and chemical characteristics, such as the pH, dry matter content, organic matter content, total salinity, total nitrogen, total phosphorus content (P2O5), potassium content (K2O), humus content (H%), humus quality and the dehydrogenase enzyme activities were determined. Temperature and redox potential were assessed twice a week in order to characterize oxidation-reduction conditions. Heavy metal concentrations (Pb, Zn, Fe, Cu, Mn) in the starting sludge, in the finished vermicompost and in the earthworms were also measured, which means, that bioaccumulation of heavy metals by earthworms can be determined.
The vermicomposting technology can be a potential tool for reducing the environmental risks of the increasing amount of communal sewage sludge wastes.
References
ARANCON, N.Q. – EDWARDS, C.A. – LEE, S. – BYRNE, R. (2006): Effects of humic acids from vermicomposts on plant growth. European Journal of Soil Biology, 42 (1), S65–S69. DOI: https://doi.org/10.1016/j.ejsobi.2006.06.004
ATIYEH, R.M. – SUBLER, S. – EDWARDS, C.A. – BACHMAN, G. – METZGER, J.D. – SHUSTER, W. (2000): Effect of vermicompost on plant growth in horticultural container media and soil. Pedobiologia, 44 (5), 579–590. DOI: https://doi.org/10.1078/S0031-4056(04)70073-6
BÁDONYI, K. – HEGYI, G. – BENKE, SZ. – MADARÁSZ, B. – KERTÉSZ, Á. (2008): Talajművelési módok agroökológiai összehasonlító vizsgálata. Tájökológiai Lapok, 6 (1–2), 145–163.
DAVID, P.P. – NELSON, P.V. – SANDERS, D.C. (1994): A humic acid improves growth of tomato seedling in solution culture. J. Plant Nutr., 17 (1), 173–184. DOI: https://doi.org/10.1080/01904169409364717
DOMINGUEZ, J. – EDWARDS, C.A. – SUBLER, S. (1997): A comparison of vermicomposting and composting. BioCycle, 38 (4), 57–59.
EASTMAN, B.R. – KANE, P.N. – EDWARDS, C.A. – TRYTEK, L. – GUNADI, B. – STERMER, L. – MOBLEY, J.R. (2001): The effectiveness of vermiculture in human pathogen reduction for USEPA biosolids stabilization. Compost Sci. Utilization, 9 (1), 38–49. DOI: https://doi.org/10.1080/1065657X.2001.10702015
GALLI, E. – TOMATI, U. – GRAPPELLI, A. – DI LENA, G. (1990): Effect of earthworm casts on protein synthesis in Agaricus-bisporus. Biol. Fertil. Soils, 9, 290–291. DOI: https://doi.org/10.1007/BF00634103
GRAPELLI, A. – TOMATI, U. – GALLI, E. – VERGARI, B. (1985): Earthworm casting in plant propagation. HortScience, 20 (5), 874–876. DOI: https://doi.org/10.21273/HORTSCI.20.5.874
HAIT, S. – TARE, V. (2011a): Vermistabilization of primary sewage sludge. Bioresour. Technol., 102 (3), 2812–2820. DOI: https://doi.org/10.1016/j.biortech.2010.10.031
HAIT, S. – TARE, V. (2011b): Optimizing vermistabilization of waste activated sludge using vermicompost as bulking material. Waste Manage, 31 (3), 502–511. DOI: https://doi.org/10.1016/j.wasman.2010.11.004
HONG, S.W. – LEE, J.S. – CHUNG, K.S. (2011): Effect of enzyme producing microorganisms on the biomass of epigeic earthworms (eisenia fetida) in vermicompost. Bioresource Technology, 102 (10), 6344–6347. DOI: https://doi.org/10.1016/j.biortech.2011.02.096
KASZA GY. – BÓDI B. – SÁRKÖZI E. – MÁZSA Á. – KARDOS L. (2015): Vermicomposting of sewage sludge – Experiences of a laboratory study. International Journal of Bioscience, Biochemistry and Bioinformatics, 5 (1), 1–10. DOI: https://doi.org/10.17706/ijbbb.2015.5.1.1-10
KOCSIS T. – KOTROCZÓ ZS. – KARDOS L. – BIRÓ B. (2020): Optimization of increasing biochar doses with soil–plant–microbial functioning and nutrient uptake of maize. Environmental Technology & Innovation, 20: 101191. DOI: https://doi.org/10.1016/j.eti.2020.101191
KOTROCZÓ ZS. – FEKETE I. (2020): Significance of soil respiration from biological activity in the degradation processes of different types of organic matter. DRC Sustainable Future: Journal of Environment, Agriculture, and Energy, 1 (2), 171–179. DOI: https://doi.org/10.37281/DRCSF/1.2.10
KOTROCZÓ ZS. – JUHOS K. – BIRÓ B. – KOCSIS T. – PABAR S.A. – VARGA CS. – FEKETE I. (2020): Effect of Detritus Manipulation on Different Organic Matter Decompositions in Temperate Deciduous Forest Soils. Forests, 11 (6), 675. DOI: https://doi.org/10.3390/f11060675
KOTROCZÓ, Z. – KOCSIS, T. – JUHOS, K. – HALÁSZ, J. – FEKETE, I. (2022): How Does Long-Term Organic Matter Treatment Affect the Biological Activity of a Centre European Forest Soil? Agronomy, 12 (10), 2301. DOI: https://doi.org/10.3390/agronomy12102301
LIU, X. – HU, C. – ZHANG, S. (2005): Effects of earthworm activity on fertility and heavy metal bioavailability in sewage sludge. Environment International, 31 (6), 874–879. DOI: https://doi.org/10.1016/j.envint.2005.05.033
LOEHR, R.C. – NEUHAUSER, E.F. – MALECKI, M.R. (1985): Factors affecting the vermistabilization process. Water Res., 19(10), 1311–1317. DOI: https://doi.org/10.1016/0043-1354(85)90187-3
MADARÁSZ B. – JAKAB G. – SZALAI Z. – JUHOS K. – KOTROCZÓ ZS. – TÓTH A. – LADÁNYI M. (2021): Long-term effects of conversation tillage on soil erosion in Central Europe: A random forest-based approach. Soil & Tillage Research, 209, 104959, 13p. DOI: https://doi.org/10.1016/j.still.2021.104959
MALLEY, C. – NAIR, J. – HO, G. (2006): Impact of heavy metals on enzymatic activity of substrate and on composting worms Eisenia fetida. Bioresource Technology, 97 (13), 1498–1502. DOI: https://doi.org/10.1016/j.biortech.2005.06.012
NDEGWA, P.M. – THOMPSON, S.A. (2001): Integrating composting and vermicomposting in the treatment and bioconversion of biosolids. Bioresour. Technol., 76 (2), 107–112. DOI: https://doi.org/10.1016/S0960-8524(00)00104-8
SHAHMANSOURI, M.R. – POURMOGHADAS, H. – PARVARESH, A.R. – ALIDADI, H. (2005): Heavy Metals Bioaccumulation by Iranian and Australian Earthworms (Eisenia fetida) in the Sewage Sludge Vermicomposting, Journal of Environmental Health Science and Engineering, 2 (1), 28–32.
TICHY, V. – PHUONG, H.K. (1975): On the character of biological effect of humic acids. Humus Planta, 6, 379–382.
TOMATI, U. – GRAPPELLI, A. – GALLI, E. (1988): The hormone-like effect of earthworm casts on plant growth. Biol. Fertil. Soils, 5, 288–294. DOI: https://doi.org/10.1007/BF00262133
VISVANATHAN C. – TRANKLER J. – JOSPEH K. – NAGENDRAN R. (eds.) (2005): Vermicomposting as an Eco-Tool in Sustainable Solid Waste Management. Asian Institute of Technology, Annamalai University, Chidambaram. 25–45.
WANG, L. – ZHENG, Z. – ZHANG, Y. – CHAO, J. – GAO, Y. – LUO, X. – ZHANG, J. (2013): Biostabilization enhancement of heavy metals during the vermiremediation of sewage sludge with passivant. Journal of Hazardous Materials, 244–245, 1–9. DOI: https://doi.org/10.1016/j.jhazmat.2012.11.036
YADAV, K.D. – TARE, V. –AHAMMAD, M.M. (2010): Vermicomposting of source-separated human faeces for nutrient recycling. Waste Management, 30, 50–56. DOI: https://doi.org/10.1016/j.wasman.2009.09.034
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Journal of Central European Green Innovation
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.