Evaluation of Organic Wastes as Substrates for Rearing Zophobas Morio, Tenebrio Molitor, and Acheta Domesticus Larvae as Alternative Feed Supplements
DOI:
https://doi.org/10.33038/jcegi.3508Keywords:
larva, growth, survival rates, nutritional value, feedAbstract
Studies have focused on identifying combinations of insects and organic waste to optimise bio-conversion. Here, the effects of different diets (10% chicken feed complemented with 90% vegetable waste, garden waste, cattle manure, or horse manure) on growth and survival rates and nutritional value of Zophobas morio and Tenebrio molitor larvae, and Acheta domesticus were investigated. Compared with chicken feed, organic waste decreased the individual larval weight, although green waste showed fewer negative effects than the manure. The macronutrient concentrations in garden waste were moderate compared with chicken feed, and vegetable waste was the poorest diet in terms of nutrient concentration. There was no difference in weight between larvae reared on garden waste and those reared on vegetable waste. Tenebrio molitor and A. domesticus showed the maximum growth rates at 71–101 and 36–66 days of age at 22.5 ± 2.5 °C, respectively. Acheta domesticus was rich in proteins, whereas Z. morio and T. molitor were rich in fat. Feeding nutrient-poor diets resulted in a lower protein and a higher fat concentration in the larvae.
References
ADÁMKOVÁ, A. – ADÁMEK, M. – MLČEK, J. – BORKOVCOVÁ, M. – BEDNÁŘOVÁ, M. – KOUŘIMSKÁ, L. – SKÁCEL, J. – VÍTOVÁ, E. (2017a): Welfare of the mealworm (Tenebrio molitor) breeding with regard to nutrition value and food safety. Potravin. Slovak J. Food Sci., 11 (1), 460–465. DOI: https://doi.org/10.5219/779
ADÁMKOVÁ, A. – MLCEK, J. – KOURIMSKÁ, L. – BORKOVCOVÁ, M. – BUSINA, T. – ADÁMEK, M. – BEDNÁROVÁ, M. – KRAJSA, J. (2017b): Nutritional potential of selected insect species reared on the island of Sumatra. Int. J. Environ. Res. Public Health, 14 (5), 521. DOI: https://doi.org/10.3390/ijerph14050521
ARAUJO, R.R.S. – DOS SANTOS BENFICA, T.A.R. – FERRAZ, V.B. – SANTOS, E.M. (2019): Nutritional composition of insects Gryllus assimilis and Zophobas morio: Potential foods harvested in Brazil. J. Food Compos. Anal., 76, 22–26. DOI: https://doi.org/10.1016/j.jfca.2018.11.005
BENZERTIHA, A. – KIERONCZYK, B. – KOŁODZIEJSKI, P. – PRUSZYNSKA–OSZMAŁEK, E. – RAWSKI, M. – JÓZEFIAK, D. – JÓZEFIAK, A. (2020): Tenebrio molitor and Zophobas morio full-fat meals as functional feed additives affect broiler chickens’ growth performance and immune system traits. Poult. Sci., 99 (1), 196–206. DOI: https://doi.org/10.3382/ps/pez450
BOOTH, D.T. – KIDDELL, K. (2007): Temperature and energetics of development in the house cricket (Acheta domesticus). J. Insect Physiol., 53 (9), 950–953. DOI: https://doi.org/10.1016/j.jinsphys.2007.03.009
BORDEREAU, C. – ANDERSEN, S.O. (1978): Structural cuticular proteins in termite queens. Comp. Biochem. Physiol. B Comp. Biochem. 60 (3), 251–256. DOI: https://doi.org/10.1016/0305-0491(78)90096-2
CADINU, L.A. – BARRA, P. – TORRE, F. – DELOGU, F. – MADAU, F.A. (2020): Insect rearing: Potential, challenges, and circularity. Sustainability, 12 (11), 4567. DOI: https://doi.org/10.3390/su12114567
COLLAVO, A. – GLEW, R.H. – HUANG, Y.-S. – CHUANG, L.T. – BOSSE, R. – PAOLETTI, M.G. (2005): House cricket small-scale farming. 515–540. In Paoletti, M.G. (Ed.) Ecological Implications of Mini Livestock: Potential of Insects, Rodents, Frogs, and Snails. CRC Press, Boca Raton, 662p. DOI: https://doi.org/10.1201/9781482294439
DUBOIS, M. – GILLES, K.A. – HAMILTON, J.K. – REBERS, P.T. – SMITH, F. (1956): Colorimetric method for determination of sugars and related substances. Anal. Chem., 28 (3), 350–356. DOI: https://doi.org/10.1021/ac60111a017
GONZÁLEZ, C.M. – GARZÓN, R. – ROSELL, C.M. (2019): Insects as ingredients for bakery goods. A comparison study of H. illucens, A. domestica and T. molitor flours. Innov. Food Sci. Emerg. Technol., 51, 205–210. DOI: https://doi.org/10.1016/j.ifset.2018.03.021
JANSSEN, R.H. – VINCKEN, J.P. – VAN DEN BROEK, L.A.M. – FOGLIANO, V. – LAKEMOND, C.M.M. (2017): Nitrogen-to-protein conversion factors for three edible insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. J. Agric. Food Chem., 65 (11), 2275–2278. DOI: https://doi.org/10.1021/acs.jafc.7b00471
KIM, S.Y. – CHUNG, T.H. – KIM S.H. – SONG, S. – KIM, N. (2014): Recycling agricultural wastes as feed for mealworm (Tenebrio molitor). Korean J. Appl. Entomol., 53 (4), 367–373. DOI: https://doi.org/10.5656/KSAE.2014.10.0.043
LACHENICHT, M.W. – CLUSELLA-TRULLAS, S. – BOARDMAN, L. – LE ROUX, C. – TERBLANCHE, J.S. (2010): Effects of acclimation temperature on thermal tolerance, locomotion performance and respiratory metabolism in Acheta domesticus L. (Orthoptera: Gryllidae). J. Insect Physiol., 56 (7), 822–830. DOI: https://doi.org/10.1016/j.jinsphys.2010.02.010
LÄHTEENMÄKI-UUTELA, A. – GRMELOVÁ, N. (2016): European law on insects in food and feed. Eur. Food Feed Law Rev., 11 (1), 2–8.
LUNDY, M.E. – PARRELLA, M.P. (2015): Crickets are not a free lunch: Protein capture from scalable organic side-streams via high-density populations of Acheta domesticus. PLoS ONE, 10, e0118785. DOI: https://doi.org/10.1371/journal.pone.0118785
MIECH, P. – BERGGEN, A. – LINDBERG, J.E. – CHHAY, T. – KHIEU, B. – JANSSON, A. (2016): Growth and survival or reared Cambodian field crickets (Releogryllus testaceus) fed weeds, agricultural and food industry by-products. J. Insects Food Feed, 2 (4), 285–292. DOI: https://doi.org/10.3920/JIFF2016.0028
MORALES-RAMOS, J.A. – ROJAS, M.G. – DOSSEY, A.T. (2018): Age-dependent food utilisation of Acheta domesticus (Orthoptera: Gryllidae) in small groups at two temperatures. J. Insects Food Feed, 4 (1), 51–60. DOI: https://doi.org/10.3920/JIFF2017.0062
OONINCX, D.G.A.B. – van BROEKHOVEN, S. – van HUIS, A. – van LOON, J.J.A. (2015): Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PLoS ONE, 10, e0144601. DOI: https://doi.org/10.1371/journal.pone.0144601
ORTIZ, J.A.C. – RUIZ, A.T. – MORALES-RAMOS, J.A. – THOMAS, M. – ROJAS, M.G. – TOMBERLIN, J.K. – YI, L. – HAN, R. – GIROUD, L. – JULLIEN, R.L. (2016): Insect mass production technologies. Insects as Sustainable Food Ingredients: Production, Processing, and Food Applications; 153–201. DOI: https://doi.org/10.1016/B978-0-12-802856-8.00006-5
RUMBOS, C.I. – KARAPANAGIOTIDIS, I.T. – MENTE, E. – PSOFAKIS, P. – ATHANASSIOU, C.G. (2020): Evaluation of various commodities for the development of the yellow mealworm, Tenebrio molitor. Sci. Rep., 10, 11224. DOI: https://doi.org/10.1038/s41598-020-67363-1
RUMPOLD, B.A. – SCHLÜTER, O.K. (2013): Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res., 57 (5), 802–823. DOI: https://doi.org/10.1002/mnfr.201200735
SORJONEN, J.M. – VALTONEN, A. – HIRVISALO, E. – KARHAPÄÄ, M. – LEHTOVAARA, V.J. – LINDGREN, J. – MARNILA, P. – MOONEY, P. – MÄKI, M. – SILJANDER-RASI, H. – TAPIO, M. – TUISKULA-HAAVISTO, M. – ROININEN, H. (2019): The plant-based by-product diets for the mass-rearing of Acheta domesticus and Gryllus bimaculatus. PLoS ONE, 14, e0218830. DOI: https://doi.org/10.1371/journal.pone.0218830
VAGA, M. – BERGGREN, A. – PAULY, T. – JANSSON, A. (2020): Effect of red clover-only diets on house crickets (Acheta domesticus) growth and survival. J. Insects Food Feed, 6 (2), 179–189. DOI: https://doi.org/10.3920/JIFF2019.0038
VARELAS, V. (2019): Food wastes as a potential new source for edible insect mass production for food and feed: A review. Fermentation, 5 (3), 81. DOI: https://doi.org/10.3390/fermentation5030081
VARELAS, V. – LANGTON, M. (2017): Forest biomass waste as a potential innovative source for rearing edible insects for food and feed – A review. Innov. Food Sci. Emerg. Technol. 41, 193–205. DOI: https://doi.org/10.1016/j.ifset.2017.03.007
VEENENBOS, M.E. – OONINCX, D.G.A.B. (2017): Carrot supplementation does not affect house cricket performance (Acheta domesticus). J. Insects Food Feed 3, 217–221. DOI: https://doi.org/10.3920/JIFF2017.0006
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Journal of Central European Green Innovation
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.