Demonstration of CO2 Emission Savings From Biomass Boilers with a 100 kW Wood Fired Boiler
DOI:
https://doi.org/10.33038/jcegi.3502Keywords:
renewable energy, hydronic circuits, heatingAbstract
An obvious solution to reducing CO2 emissions is the use of renewable energies. In this article, using domestic temperature data, we show how much CO2 can be saved compared to a natural gas appliance in an average heating season. In the article, we also discuss the expected fuel consumption each month. From the point of view of environmental protection, the lifetime of the system is also highly important, since the production of devices and system components, construction, and waste management are also associated with the environmental impact. In the case of wood boilers, the greatest risk (premature failure) is the corrosion of the combustion chamber. Condensation occurs in the combustion chamber during cold starts. To avoid condensation, manufacturers require the increase of the return temperature. In the article, we present the properly designed hydronic connection and the step-by-step method of sizing the most typical system element: the control valve. We present the flow conditions associated with the operating conditions of the boiler. Finally, we also present our calculated CO2 emissions.
References
GERRING, D. (2022): Renewable Energy Systems for Building Designers: Fundamentals of Net Zero and High Performance Design (1st ed.). Routledge, New York, 336p. https://doi.org/10.1201/9781003297819
JAUSCHOWETZ, R. (2007): Hidraulika a melegvízfűtés szíve. Herz Armatúra Hungária Kft Budapest, 145p. Elérhető: http://ftp.herzarmatura.hu/
KSH (2022): 1.2.1.6. Egyes termékek és szolgáltatások fogyasztói átlagára (nyers adatok), havonta*. Letöltés dátuma: 2022. szeptember 26. forrás: KSH: https://www.ksh.hu/stadat_files/ara/hu/ara0044.html
PRESS-KRISTENSE K. (2016): A lakossági tüzelés légszennyezése. Levegő Munkacsoport, Danish Ecological Council 40p. Letöltés dátuma: 2022.10.20. forrás: file:///C:/Users/Admin/Downloads/Pollution_from_residential_burning_hungarian_final.pdf
SIEMENS (2019): Einführung in die HLK- und Gebäudetechnik. Germany, Siemens AG, E10003-A38-H337, 132 p. Elérhető: https://sid.siemens.com/v/u/A6V10332797
SILLAPAPIROMSUK, S. – CHANTARA, S. – TENGJAROENKUL, U. –PRASITWATTANASEREEC, S. – PRAPAMONTOLD, T. (2013): Determination of PM10 and its ion composition emitted from biomass burning in the chamber for estimation of open burning emissions. Chemosphere, 93(9), 1912–1919. https://doi.org/10.1016/j.chemosphere.2013.06.071
VANDENBULCKE, R., MERTENS, L. & JANSSEN, E. (2012): A simulation methodology for heat and cold distribution in thermo-hydronic networks. Build. Simul. 5, 203–217. https://doi.org/10.1007/s12273-012-0066-7
VINKLER, K. (2015): Kézben tartott áramlás (hidraulikai beszabályozás épületgépészeti rendszerekben. PI Inoovációs Kft., Budapest, 247p.
/28/EC RED recast megújuló-irányelv. Letöltés dátuma: 2022. SZEPTEMBER 20. forrás: EUR-Lex https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32009L0028
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Journal of Central European Green Innovation
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.