Possibilities of Vegetation Analysis in Visible Range Drone Survey
DOI:
https://doi.org/10.33038/jcegi.3463Keywords:
visible bands, multispectral band, NDVI, drone survey, image processingAbstract
High-precision aerial surveys with Multispectral camera-equipped drones are beneficial supporting agricultural tasks. Multispectral tools are expensive, beside its widely use. In visible spectrum (Red, Green, Blue – RGB) cameras are possible cost-efficient solutions for remote sensing over vegetation areas. In this case, tasks of the preprocessing are more simply. Drone surveys were carried out over nearby winter wheat (Triticum aestivum L.) and winter coleseed (Brassica napus L.) tables three times in a row. During data processing indices of visible spectrum were compared to each other and to multispectral Normalized Differencial Vegetation Index – NDVI) data.
References
AHAMED, T. – TIAN, L. – ZHANG, Y. – TING, K. C. (2011): A review of remote sensing methods for biomass feedstock production. Biomass and Bioenergy, 35(7), 2455–2469. DOI: https://doi.org/10.1016/j.biombioe.2011.02.028
BUSZNYÁK, J. (2022/a): Pilóta nélküli légijármű-műveletek szabályozása Mezőgazdasági Technika, Gödöllő. HU ISSN 0026 1890, 63 2pp, 3p 18–20.
BUSZNYÁK, J (2022/b): Multispektrális távérzékelési adatok gyűjtése, feldolgozása Mező-gazdasági Technika, Gödöllő. HU ISSN 0026 1890, 63, 4pp, 4p 2–5.
CONGEDO, L.: (2021): Semi-Automatic Classification Plugin: A Python tool for the download and processing of remote sensing images in QGIS. Journal of Open Source Soft-ware, 6(64), 3172
COSTA, L. – NUNES, L. – AMPATZIDIS, Y. (2020): A new visible band index (vNDVI) for estimating NDVI values on RGB images utilizing genetic algorithms. Computers and Electronics in Agriculture, 172, 105334.
EU – BIZOTTSÁG (2019): 2019/947 VÉGREHAJTÁSI RENDELETE (2019. május 24.) a pilóta nélküli légi járművekkel végzett műveletekre vonatkozó szabályokról és eljárásokról Az Európai Unió Hivatalos Lapja L 152/45
FEÑUELAS, J. – FILELLA, I. (1998): Visible and near- infrared reflectance techniques for diagnosing plant physiological status. Trends In Plant Science. 3 (4), 151–156. DOI: http://doi.org/10.1016/S1360-1385(98)01213-8
GITELSON A. – STARK R – GRITS U – RUNDQUIST D – KAUFMAN Y – DERRY D. (2002/a): "Vegetation and Soil Lines in Visible Spectral Space: A Concept and Technique for Remote Estimation of Vegetation Fraction." International Journal of Remote Sensing 23 (2002): 2537−2562."
GITELSON, A. A. – KAUFMAN, Y. J. – STARK, R. – RUNDQUIST, D., (2002/b): Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment, 80, 76–87. DOI: http://dx.doi.org/10.1016/S0034-4257(01)00289-9
HUNT, E. R. – DAUGHTRY C. S. T. – EITEL J. U. H – LONG D.S. (2011): Remote sen-sing leaf chlorophyll content using a visible band index. Agronomy Journal 103, 1090–1099. DOI: https://doi.org/10.2134/agronj2010.0395
HUNT, E. R. – DORAISWAMYA, P. C. – MCMURTREYA, J. E. – DAUGHTRYA, C. S. T. – PERRY, E. M. – AKHMEDOVA, B. (2013): A Visible Band Index for Remote Sensing Leaf Chlorophyll Content at the Canopy Scale. International Journal of Applied Earth Obser-vation and Geoinformation 21, 103-112. DOI: https://doi.org/10.1016/j.jag.2012.07.020
LEHOCZKY, É. – BUSZNYÁK, J. – GÓLYA, G. (2013): Study on the Spread, Biomass Production, and Nutrient Content of Ragweed with High-Precision GNSS and GIS Device System. Communications in Soil Science And Plant Analysis, 44 (1–4): 535–545. DOI: https://doi.org/10.1080/00103624.2013.744157
LEHOCZKY, É. – TAMAS, J. – RICZU, P. – HERDON, M. (2014): Weed Mapping Based on Integrated Remote Sensing Method In: Remigio, Berruto; Fedro, S Zazueta; Flor, Solano (szerk.) Proceedings in World Conference on Computers in Agriculture and Natural Resources San José, Costa Rica: American Society of Agricultural and Biological Engineers (ASABE) Paper: 155, 8 p.
LEHOCZKY, É. – RICZU, P. – MAZSU, N. – DELLASZÉGA LÁBAS, V. – TAMÁS, J.:(2018/a): Applying of remote sensing in weed survey by different cameras. In: Zoltán, Ken-de (szerk.) 17th Alps-Adria Scientific Workshop: Abstract Book, Szent István Egyetem Egye-temi Kiadó, Gödöllő. 172 p. pp. 44–45. Online ISBN 978-963-269-734-5 http://www.alpsadria.hu/17thAASW/Absract%20book_17thAASW.pdf
LEHOCZKY, É. – RICZU, P. – MAZSU, N. – DELLASZÉGA LÁBAS V. – TAMÁS, J. (2018/b): Applicability of remote sensing in weed detection. In: EGU General Assembly 2018: Geophysical Research Abstracts 1 Paper: EGU2018-14644. https://ui.adsabs.harvard.edu/abs/2018EGUGA..2014644L/abstract
MCKINNON, T. – HOFF, P. (2017): Comparing RGB-based vegetation indices with NDVI for drone based agricultural sensing. Agribotix. Com, 1–8.
MicaSensE (2017): MicaSense RedEdge-M Multispectral Camera User Manual, Rev 01, Nov-ember 2017, Seattle, WA 1–47. https://www.geotechenv.com/
Pix4d (2021): Dokumentation, Supported cameras - PIX4Dfields forrás: https://support.pix4d.com/hc/en-us/categories/360000061343
Qgis project (2022): Qgis Desktop User Guide/Manual (QGIS 3.22) forrás: https://docs.qgis.org/3.22/hu/docs/user_manual/#
RICZU, P. – NAGY, A. – LEHOCZKY, É. – TAMÁS, J. (2015): Precision Weed Detection Using Terrestrial Laser Scanning Techniques. Communications in Soil Science And Plant Analysis, 46 (1): 309-316. DOI: https://doi.org/10.1080/00103624.2014.989053
ROUSE, J. – HAAS, R. – SCHELL J. – DEERING D. (1973): Monitoring Vegetation Systems in the Great Plains with ERTS. Third ERTS Symposium, NASA, 309–317.
SOLYMOSI, K. – KÖVÉR, Gy. – ROMVÁRI, R. (2019): The Development of Vegetation Indices a Short Overview. Acta Agraria Kaposváriensis 23(1), 75–90. DOI: https://doi.org/10.31914/aak.2264
STARY, K. – JELÍNEK, Z. – KUMHÁLOVÁ, J. – CHYBA, J. – BALÁZOVA, K. (2020): Comparing RGB-based vegetation indices from UAV imageries to estimate hops canopy area. Agronomy Research, 18 (4) 2592–2601. DOI: https://doi.org/10.15159/AR.20.169
TAMÁS, J. – NAGY, A. – FEHÉR, J. – STELIAN, N. – LEHOCZKY, É. (2014): From Spectral Time Series Analyses To Drought Monitoring –GWP IDMP In: Anon (Ed) WCCA 2014 XII World Congress on Computers in Agriculture and Natural Resources. San Jose (CA), USA p. 2
TAMÁS, J. – RICZU, P. – NAGY, A. – LEHOCZKY, É. (2015): Evaluation of surface ru-noff conditions by high resolution terrestrial laser scanner in an intensive apple orchard In: International Soil and Water Assessment Tool Conference: SWAT 2015: Book of Abstracts CRS4 206 p. pp. 204–205.
WANG, F.– HUANG, J.– TANG, Y.– WANG, X. (2007): New Vegetation Index and Its Application in Estimating Leaf Area Index of Rice. Rice Science, 14 (3): 195–203. DOI: https://doi.org/10.1016/S1672-6308(07)60027-4
ZHANG, J. – WANG, C. – YANG, C. – JIANG, Z. – ZHOU, G. – WANG, B. – SHI, Y. – ZHANG, D. – YOU, L. – XIE, J. (2020): “Evaluation of a UAV-mounted consumer grade camera with different spectral modifications and two handheld spectral sensors for rapeseed growth monitoring: performance and influencing factors. Precision Agriculture. DOI: https://doi.org/10.1007/s11119-020-09710-w
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Journal of Central European Green Innovation
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.