Szennyvíziszap komposztálási technológiák lehetőségeinek áttekintése
DOI:
https://doi.org/10.33038/jcegi.7335Kulcsszavak:
komposztálás, hulladékkezelés, hulladék újrahasznosításAbsztrakt
A szennyvíziszapok újrahasznosítása kulcsfontosságú szerepet játszik a körforgásos gazdaságban, az EU 2030-as Zöld Megállapodásának egyik fő fókuszterülete. A szennyvíztisztítás mellékterméke, a szennyvíziszap, fenntartható növényi tápanyagforrásként szolgálhat különféle komposztálási technológiák alkalmazásával. A komposztálás segít csökkenteni a szennyezést azáltal, hogy a szerves hulladékot, például a szennyvíziszapot, mikroorganizmusok segítségével komposzttá alakítja. A komposzt javítja a talaj minőségét és egészségét. A számos komposztálási megközelítés, mint a prizmakomposztálás, a levegőztetett prizmakomposztálás, a gilisztahumusz készítés és a tartályban történő komposztálás mindegyikének egyedi előnyei és hátrányai vannak a környezeti hatás, a hatékonyság és a fenntarthatóság szempontjából. Ez a tanulmány áttekintést nyújt a komposztálási módszerekről, és bemutatja a szennyvíziszap komposztálásának optimalizálására szolgáló fejlett komposztálási technológiákat. Az aerob komposztálás a legszélesebb körben alkalmazott módszer a hatékonysága és a kórokozók eltávolítására való képessége miatt; azonban továbbra is aggályok merülnek fel az üvegházhatású gázok kibocsátása és a tápanyagveszteség miatt. E kihívások kezelése érdekében kifejlesztették az együttes komposztálást, a gilisztahumusz készítést és a kétfázisú komposztálást a komposzt minőségének javítása és a feldolgozási idő lerövidítése érdekében. Ezen fejlesztések ellenére a területi korlátozások, a komplex technológiák és a magas költségek továbbra is jelentős korlátokat jelentenek. Ez a tanulmány hangsúlyozza a mikrobiális dinamika, a kórokozók eltávolításának és a komposzt érésének fontosságát a komposztálás kulcsfontosságú szakaszaiban, a mezofil fázistól a termofil fázisig, a stabil, tápanyagban gazdag komposzt előállítása érdekében. Bár a komposztálási technológiák összhangban vannak a fenntarthatósági célokkal, további kutatásokra van szükség a hatékonyság javítása, a kibocsátások csökkentése és a lehetséges gazdasági hatások felmérése érdekében. Ez az összefoglaló felhívja a figyelmet a komposztálásnak a hulladékgazdálkodási és környezeti fenntarthatósági célok elérésében való fontos szerepére.
Hivatkozások
AHMED, M. – IDRIS, A. – OMER, S. S. (2007): Behaviour and fate of heavy metals in the composting of industrial tannery sludge. Malaysian J Anal Sci, 11(2), 340–350.
AMBADE, B. – SHARMA, S. – SHARMA, Y. (2013): Characterization and open windrow composting of MSW in Jodhpur City, Rajasthan, India. Journal of Environmental Science & Engineering, 55(3), 351–358.
AMUAH, E. E. Y. – FEI-BAFFOE, B. – SACKEY, L. N. A. – DOUTI, N. B. – KAZAPOE, R. W. (2022): A review of the principles of composting: Understanding the processes, methods, merits, and demerits. Organic Agriculture, 12(4), 547–562. https://doi.org/10.1007/s13165-022-00408-z
BARTHOD, J. – RUMPEL, C. – DIGNAC, M. F. (2018): Composting with additives to improve organic amendments. A review. Agronomy for Sustainable Development, 38(2), 17. https://doi.org/10.1007/s13593-018-0491-9
BEZSENYI, A. – SÁGI, G. – MAKÓ, M. – WOJNÁROVITS, L. – TAKÁCS, E. (2021): The effect of hydrogen peroxide on the biochemical oxygen demand (BOD) values measured during ionizing radiation treatment of wastewater. Radiation Physics and Chemistry, 189, 109773. https://doi.org/10.1016/j.radphyschem.2021.109773
BHAVE, P. P. – KULKARNI, B. N. (2019): Effect of active and passive aeration on composting of household biodegradable wastes: A decentralized approach. International Journal of Recycling of Organic Waste in Agriculture, 8(S1), 335–344. https://doi.org/10.1007/s40093-019-00306-7
BLAZY, V. – DE GUARDIA, A. – BENOIST, J. C. – DAUMOIN, M. – LEMASLE, M. – WOLBERT, D. – BARRINGTON, S. (2014): Odorous gaseous emissions as influence by process condition for the forced aeration composting of pig slaughterhouse sludge. Waste Management, 34(7), 1125–1138. https://doi.org/10.1016/j.wasman.2014.03.012
CALVIN, K. – DASGUPTA, D. – KRINNER, G. – MUKHERJI, A. – THORNE, P. W. – TRISOS, C. – ROMERO, J. – ALDUNCE, P. – BARRETT, K. – BLANCO, G. – CHEUNG, W. W. L. – CONNORS, S. – DENTON, F. – DIONGUE-NIANG, A. – DODMAN, D. – GARSCHAGEN, M. – GEDEN, O. – HAYWARD, B. – JONES, C. – PÉAN, C. (2023): IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland. (First). Intergovernmental Panel on Climate Change (IPCC). https://doi.org/10.59327/IPCC/AR6-9789291691647
CESARO, A. – BELGIORNO, V. – GUIDA, M. (2015): Compost from organic solid waste: Quality assessment and European regulations for its sustainable use. Resources, Conservation and Recycling, 94, 72–79. https://doi.org/10.1016/j.resconrec.2014.11.003
COOPERBAND, L. R. (2000): Composting: Art and science of organic waste conversion to a valuable soil resource. Laboratory Medicine, 31(5), 283–290.
Council of the European Communities, CONSIL, 181 OJ L (1986): http://data.europa.eu/eli/dir/1986/278/oj
DE OLIVEIRA, J. D. – ORRICO, A. C. A. – DA SILVA VILELA, R. N. – ORRICO JUNIOR, M. A. P. – ASPILCUETA BORQUIS, R. R. – TOMAZI, M. – LEITE, B. K. V. (2024): Effects of aeration and season on the composting of hatchery waste. Environmental Progress & Sustainable Energy, 43(2), e14269. https://doi.org/10.1002/ep.14269
DENTEL, S. K. – QI, Y. (2014a): Management of Sludges, Biosolids, and Residuals. In Comprehensive Water Quality and Purification (pp. 223–243). Elsevier. https://doi.org/10.1016/B978-0-12-382182-9.00049-9
DIAZ, L. F. – SAVAGE, G. M. – EGGERTH, L. L. – CHIUMENTI, A. (2007a): Chapter 5 Systems used in composting. In Waste Management Series (Vol. 8, pp. 67–87). Elsevier. https://doi.org/10.1016/S1478-7482(07)80008-X
DIAZ, L. F. – SAVAGE, G. M. – EGGERTH, L. L. – CHIUMENTI, A. (2007b): Systems used in composting. In Waste Management Series (Vol. 8, pp. 67–87). Elsevier. https://www.sciencedirect.com/science/article/pii/S147874820780008X
DRAGOMIR, V. D. – DUMITRU, M. (2024): The state of the research on circular economy in the European Union: A bibliometric review. Cleaner Waste Systems, 7, 100127. https://doi.org/10.1016/j.clwas.2023.100127
EPSTEIN, E. (2011): Industrial composting. Environmental Engineering and Facilities Management. New York: Taylor and Francis Group. https://api.taylorfrancis.com/content/books/mono/download?identifierName=doi&identifierValue=10.1201/b10726&type=googlepdf
European Commission (2020): https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52020DC0098
European Commission (2021): https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52021DC0400
European Commission (2021b): https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52021DC0699
European Parliament & Council, CONSIL, 182 OJ L (1999): http://data.europa.eu/eli/dir/1999/31/oj
European Parliament & Council, CONSIL, EP, 312 OJ L (2008): http://data.europa.eu/eli/dir/2008/98/oj
European Parliament & Council, 170 OJ L (2019): http://data.europa.eu/eli/reg/2019/1009/oj
European Parliament & Council, 198 OJ L (2020): http://data.europa.eu/eli/reg/2020/852/oj
FAO. (2021). Large-scale composting. https://www.fao.org/4/y5104e/y5104e07.htm
FAO. (2024). On-farm composting methods. https://www.fao.org/4/y5104e/y5104e05.htm
FLYNN, R. R. P. - HAGEVOORT, R. G. (2013): Whole Animal Composting of Dairy Cattle. https://pubs.nmsu.edu/_d/D108/index.html
GAJALAKSHMI, S. – ABBASI, S. A. (2008): Solid Waste Management by Composting: State of the Art. Critical Reviews in Environmental Science and Technology, 38(5), 311–400. https://doi.org/10.1080/10643380701413633
GARG, V. K. – CHAND, S. – CHHILLAR, A. – YADAV, A. (2005): Growth and reproduction of Eisenia foetida in various animal wastes during vermicomposting. Applied Ecology and Environmental Research, 3(2), 51–59. https://doi.org/10.15666/aeer/0302_051059
GEORGI, K. – EKATERINA, S. – ALEXANDER, P. – ALEXANDER, R. – KIRILL, Y. – ANDREY, V. (2022): Sewage sludge as an object of vermicomposting. Bioresource Technology Reports, 20, 101281. https://doi.org/10.1016/j.biteb.2022.101281
GHAHDARIJANI, A. R. J. – HOODAJI, M. – TAHMOURESPOUR, A. (2022): Vermicomposting of sewage sludge with organic bulking materials to improve its properties. Environmental Monitoring and Assessment, 194(8), 555. https://doi.org/10.1007/s10661-022-10236-z
GONAWALA, S. S. – JARDOSH, H. (2018): Organic Waste in Composting: A brief review. International Journal of Current Engineering and Technology, 8(1), 36–38. https://doi.org/10.14741/ijcet.v8i01.10884
GONZÁLEZ, I. – ROBLEDO-MAHÓN, T. – SILVA-CASTRO, G. A. – RODRÍGUEZ-CALVO, A. – GUTIÉRREZ, M. C. – MARTÍN, M. Á. – CHICA, A. F. – CALVO, C. (2016): Evolution of the composting process with semi-permeable film technology at industrial scale. Journal of Cleaner Production, 115, 245–254. https://doi.org/10.1016/j.jclepro.2015.12.033
GUPTA, R. – GARG, V. (2008): Stabilization of primary sewage sludge during vermicomposting. Journal of Hazardous Materials, 153(3), 1023–1030. https://doi.org/10.1016/j.jhazmat.2007.09.055
HAUG, R. (2018): The practical handbook of compost engineering. Routledge. https://www.taylorfrancis.com/books/mono/10.1201/9780203736234/practical-handbook-compost-engineering-rogertim-haug
HO, T. T. K. – TRA, V. T. – LE, T. H. – NGUYEN, N.-K.-Q. – TRAN, C.-S. – NGUYEN, P.-T. – VO, T.-D.-H. – THAI, V.-N. – BUI, X.-T. (2022): Compost to improve sustainable soil cultivation and crop productivity. Case Studies in Chemical and Environmental Engineering, 6, 100211. https://doi.org/10.1016/j.cscee.2022.100211
HUANG, K. – LI, F. – FU, X. – CHEN, X. (2013): Feasibility of a novel vermitechnology using vermicast as substrate for activated sludge disposal by two epigeic earthworm species. Agricultural Sciences, 04(10), 529–535. https://doi.org/10.4236/as.2013.410071
HUANG, K. – ZHANG, Y. – XU, J. – GUAN, M. – XIA, H. (2022): Feasibility of vermicomposting combined with room drying for enhancing the stabilization efficiency of dewatered sludge. Waste Management, 143, 116–124. https://doi.org/10.1016/j.wasman.2022.02.026
HUBBE, M. A. – NAZHAD, M. – SANCHEZ, C. (2010): Composting as a way to convert cellulosic biomass and organic waste into high-value soil amendments: A review. https://www.cabidigitallibrary.org/doi/full/10.5555/20103364021
INSAM, H. – FRANKE-WHITTLE, I. – GOBERNA, M. (Eds). (2010): Microbes at Work. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-04043-6
JIANG-MING, Z. (2017): Effect of turning frequency on co-composting pig manure and fungus residue. Journal of the Air & Waste Management Association, 67(3), 313–321. https://doi.org/10.1080/10962247.2016.1232666
JIN, Q. – KIRK, M. F. (2018): pH as a Primary Control in Environmental Microbiology: 2. Kinetic Perspective. Frontiers in Environmental Science, 6, 101. https://doi.org/10.3389/fenvs.2018.00101
JONES, P. – MARTIN, M. (2003): A review of the literature on the occurrence and survival of pathogens of animals and humans in green compost. The Waste and Resources Action Programme, 33. https://cesantaclara.ucanr.edu/files/240557.pdf
KANACHI, A. – SATO, N. – SAMARAWEERA, N. – GUNASEKARA, L. – KAWANISHI, R. – KARUNARATHNA, A. (2023): Performance Evaluation of a Full-Scale Forced Aerated Municipal Solid Waste Composting System: A Case Study in Kalutara, Sri Lanka. In K. Ujikawa – M. Ishiwatari, – E. V. Hullebusch (Eds), Environment and Sustainable Development (pp. 157–165). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-4101-8_12
KOSOBUCKI, P. – CHMARZYŃSKI, A. – BUSZEWSKI, B. (2000): Sewage Sludge Composting. Polish Journal of Environmental Studies, 9(4), 243–248.
KROGMANN, U. – KÖRNER, I. – DIAZ, L. F. (2010): Composting: Technology. In T. H. Christensen (Ed.), Solid Waste Technology & Management (pp. 533–568). John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470666883.ch35
KULIKOWSKA, D. – GUSIATIN, Z. M. (2015): Sewage sludge composting in a two-stage system: Carbon and nitrogen transformations and potential ecological risk assessment. Waste Management, 38, 312–320. https://doi.org/10.1016/j.wasman.2014.12.019
LIEW, C. S. – YUNUS, N. M. – CHIDI, B. S. – LAM, M. K. – GOH, P. S. – MOHAMAD, M. – SIN, J. C. – LAM, S. M. – LIM, J. W. – LAM, S. S. (2022): A review on recent disposal of hazardous sewage sludge via anaerobic digestion and novel composting. Journal of Hazardous Materials, 423, 126995. https://doi.org/10.1016/j.jhazmat.2021.126995
LIM, L. Y. – BONG, C. – LEE, C. T. – KLEMEŠ, J. – LIM, J. S. – SARMIDI, M. (2017): Review on the Current Composting Practices and the Potential of Improvement using Two-Stage Composting. Chemical Engineering Transactions, 61, 1051–1056. https://doi.org/10.3303/CET1761173
LOFRANO, G. – PEDRAZZANI, R. – LIBRALATO, G. – CAROTENUTO, M. (2017): Advanced Oxidation Processes for Antibiotics Removal: A Review. Current Organic Chemistry, 21(12), 1054–1067. https://doi.org/10.2174/1385272821666170103162813
LOPES, I. G. – DE SOUZA, L. F. – DA CRUZ, M. C. P. – VIDOTTI, R. M. (2019): Composting as a strategy to recycle aquatic animal waste: Case study of a research centre in São Paulo State, Brazil. Waste Management & Research: The Journal for a Sustainable Circular Economy, 37(6), 590–600. https://doi.org/10.1177/0734242X19830170
LU, H. R. – QU, X. – EL HANANDEH, A. (2020): Towards a better environment - the municipal organic waste management in Brisbane: Environmental life cycle and cost perspective. Journal of Cleaner Production, 258, 120756. https://doi.org/10.1016/j.jclepro.2020.120756
MATAMOROS, V. – HIJOSA, M. – BAYONA, J. M. (2009): Assessment of the pharmaceutical active compounds removal in wastewater treatment systems at enantiomeric level. Ibuprofen and naproxen. Chemosphere, 75(2), 200–205. https://doi.org/10.1016/j.chemosphere.2008.12.008
MEENA, A. L. – KARWAL, M. – DUTTA, D. – MISHRA, R. P. (2021): Composting: Phases and factors responsible for efficient and improved composting. Agriculture and Food: E-Newsletter, 1, 85–90.
MENG, L. – XU, C. – WU, F. – HUHE. (2022): Microbial co-occurrence networks driven by low-abundance microbial taxa during composting dominate lignocellulose degradation. Science of The Total Environment, 845, 157197. https://doi.org/10.1016/j.scitotenv.2022.157197
MICHEL, F. – O’NEILL, T. – RYNK, R. – GILBERT, J. – SMITH, M. – ABER, J. – KEENER, H. (2022): Forced aeration composting, aerated static pile, and similar methods. In The Composting Handbook (pp. 197–269). Elsevier. https://doi.org/10.1016/B978-0-323-85602-7.00007-8
MISRA, R. V. – ROY, R. N. – HIRAOKA, H. (2003): On-farm composting methods. Rome, Italy: UN-FAO. https://vtechworks.lib.vt.edu/items/b7ba3abc-22c0-44ba-97c8-1b0613c7111a
MOSHARAF, M. K. – GOMES, R. L. – COOK, S. – ALAM, M. S. – RASMUSSSEN, A. (2024): Wastewater reuse and pharmaceutical pollution in agriculture: Uptake, transport, accumulation and metabolism of pharmaceutical pollutants within plants. Chemosphere, 364, 143055. https://doi.org/10.1016/j.chemosphere.2024.143055
MU, D. – HOROWITZ, N. – CASEY, M. – JONES, K. (2017): Environmental and economic analysis of an in-vessel food waste composting system at Kean University in the U.S. Waste Management, 59, 476–486. https://doi.org/10.1016/j.wasman.2016.10.026
MUSCARELLA, S. M. – BADALUCCO, L. – LAUDICINA, V. A. – WANG, Z. – MANNINA, G. (2023): Wastewater treatment sludge composting. In Current Developments in Biotechnology and Bioengineering (pp. 115–136). Elsevier. https://doi.org/10.1016/B978-0-323-99920-5.00008-1
NELSON, V. L. – CROWE, T. G. – SHAH, M. A. – WATSON, L. G. (2006): Temperature and turning energy of composting feedlot manure at different moisture contents in southern Alberta. 48, 613–637.
NORDAHL, S. L. – PREBLE, C. V. – KIRCHSTETTER, T. W. – SCOWN, C. D. (2023): Greenhouse Gas and Air Pollutant Emissions from Composting. Environmental Science & Technology, 57(6), 2235–2247. https://doi.org/10.1021/acs.est.2c05846
QUINTERN, M. (2014): Full scale vermicomposting and land utilisation of pulpmill solids in combination with municipal biosolids (sewage sludge). 65–76. https://doi.org/10.2495/WM140061
QUINTERN, M. – MORLEY, M. (2017): Vermicomposting of Biosolids and Beneficial Reuse—New Zealand Commercial Case Studies from 4 Communities over 8 Years. Proceedings of the Water Environment Federation, 2017(1), 1084–1098. https://doi.org/10.2175/193864717821496112
RASAPOOR, M. – ADL, M. – POURAZIZI, B. (2016): Comparative evaluation of aeration methods for municipal solid waste composting from the perspective of resource management: A practical case study in Tehran, Iran. Journal of Environmental Management, 184, 528–534. https://doi.org/10.1016/j.jenvman.2016.10.029
RAZA, S. – AHMAD, J. (2016): Composting process: A review. International Journal of Biological Research, 4(2), 102–104.
ROBERTS, J. – KUMAR, A. – DU, J. – HEPPLEWHITE, C. – ELLIS, D. J. – CHRISTY, A. G. – BEAVIS, S. G. (2016): Pharmaceuticals and personal care products (PPCPs) in Australia’s largest inland sewage treatment plant, and its contribution to a major Australian river during high and low flow. Science of The Total Environment, 541, 1625–1637. https://doi.org/10.1016/j.scitotenv.2015.03.145
ROSENFELD, P. – GREY, M. (2004): Measurement of Biosolids Compost Odor Emissions from a Windrow, Static Pile, and Biofilter. Water Environment Research, 76(4), 310–315. https://doi.org/10.2175/106143004X141898
RYNK, R. – RICHARD, T. L. (2001): Commercial compost production systems. Compost Utilization in Horticultural Cropping Systems, 51–93.
SAMAL, K. – MAHAPATRA, S. – HIBZUR ALI, M. (2022): Pharmaceutical wastewater as Emerging Contaminants (EC): Treatment technologies, impact on environment and human health. Energy Nexus, 6, 100076. https://doi.org/10.1016/j.nexus.2022.100076
SENESI, N. – PLAZA, C. – BRUNETTI, G. – POLO, A. (2007): A comparative survey of recent results on humic-like fractions in organic amendments and effects on native soil humic substances. Soil Biology and Biochemistry, 39(6), 1244–1262. https://doi.org/10.1016/j.soilbio.2006.12.002
SLORACH, P. C. – JESWANI, H. K. – CUÉLLAR-FRANCA, R. – AZAPAGIC, A. (2019): Environmental and economic implications of recovering resources from food waste in a circular economy. Science of The Total Environment, 693, 133516. https://doi.org/10.1016/j.scitotenv.2019.07.322
SPINOSA, L. – AYOL, A. – BAUDEZ, J.-C. – CANZIANI, R. – JENICEK, P. – LEONARD, A. – RULKENS, W. – XU, G. – VAN DIJK, L. (2011): Sustainable and Innovative Solutions for Sewage Sludge Management. Water, 3(2), 702–717. https://doi.org/10.3390/w3020702
STELMACHOWSKI, M. – JASTRZȨBSKA, M. – ZARZYCKI, R. (2003): In-vessel composting for utilizing of municipal sewage-sludge. Applied Energy, 75(3–4), 249–256. https://doi.org/10.1016/S0306-2619(03)00038-2
TÓTH, G. – VERES, Z. – LAKATOS, G. – BALÁZSY, S. (2023): The Elimination of Pharmaceutical Agents with Microbiological Treatment from Municipal Sewage. Sustainability, 15(4), 2991. https://doi.org/10.3390/su15042991
TURLEJ, T. – BANAŚ, M. (2018a): Sustainable management of sewage sludge. E3S Web of Conferences, 49, 00120. https://doi.org/10.1051/e3sconf/20184900120
TUROVSKIY, I. S. – MATHAI, P. K. (2006): Wastewater Sludge Processing (1st edn). Wiley. https://doi.org/10.1002/047179161X
USEPA, O. (2015, August 19): Approaches to Composting [Overviews and Factsheets]. https://www.epa.gov/sustainable-management-food/approaches-composting
USEPA, O. (2017): Types of Composting and Understanding the Process [Overviews and Factsheets]. https://19january2017snapshot.epa.gov/sustainable-management-food/types-composting-and-understanding-process
VARMA, V. S. – DAS, S. – SASTRI, C. V. – KALAMDHAD, A. S. (2017): Microbial degradation of lignocellulosic fractions during drum composting of mixed organic waste. Sustainable Environment Research, 27(6), 265–272. https://doi.org/10.1016/j.serj.2017.05.004
VRÎNCEANU, N. – NEGRU, P. – SAFTA, E. – STAN, V. (2020): Improving sewage sludge compost quality by vermicomposting. LXIII, 267–272.
WALLING, E., – VANEECKHAUTE, C. (2020): Greenhouse gas emissions from inorganic and organic fertilizer production and use: A review of emission factors and their variability. Journal of Environmental Management, 276, 111211. https://doi.org/10.1016/j.jenvman.2020.111211
WANG, L. – FENG, Z. – WANG, Z. – WANG, Y. – WANG, Z. (2025): Aerobic composting characteristics of corn straw and pig manure under dynamic aeration. Environmental Technology, 46(3), 443–452. https://doi.org/10.1080/09593330.2024.2359730
WEI, Y.-S. – FAN, Y.-B. – WANG, M.-J. (2001): A cost analysis of sewage sludge composting for small and mid-scale municipal wastewater treatment plants. Resources, Conservation and Recycling, 33(3), 203–216. https://doi.org/10.1016/S0921-3449(01)00087-8
WICHUK, K. M. – MCCARTNEY, D. (2013): Compost stability and maturity evaluation—A literature review. Journal of Environmental Engineering and Science, 8(5), 601–620. https://doi.org/10.1680/jees.2013.0063
WIŚNIOWSKA, E. (2019): Sludge activation, conditioning, and engineering. In Industrial and Municipal Sludge (pp. 181–199). Elsevier. https://doi.org/10.1016/B978-0-12-815907-1.00009-X
YANG, L. – JIAO, Y. – XU, X. – PAN, Y. – SU, C. – DUAN, X. – SUN, H. – LIU, S. – WANG, S. – SHAO, Z. (2022): Superstructures with Atomic-Level Arranged Perovskite and Oxide Layers for Advanced Oxidation with an Enhanced Non-Free Radical Pathway. ACS Sustainable Chemistry & Engineering, 10(5), 1899–1909. https://doi.org/10.1021/acssuschemeng.1c07605
YUVARAJ, A. – KARMEGAM, N. – TRIPATHI, S. – KANNAN, S. – THANGARAJ, R. (2020): Environment-friendly management of textile mill wastewater sludge using epigeic earthworms: Bioaccumulation of heavy metals and metallothionein production. Journal of Environmental Management, 254, 109813. https://doi.org/10.1016/j.jenvman.2019.109813
ZHANG, L. – SUN, X. (2014): Effects of rhamnolipid and initial compost particle size on the two-stage composting of green waste. Bioresource Technology, 163, 112–122. https://doi.org/10.1016/j.biortech.2014.04.041
ZHOU, Y. – SELVAM, A. – WONG, J. W. C. (2018): Chinese medicinal herbal residues as a bulking agent for food waste composting. Bioresource Technology, 249, 182–188. https://doi.org/10.1016/j.biortech.2017.09.212
Letöltések
Megjelent
Folyóirat szám
Rovat
License
Copyright (c) 2025 Journal of Central European Green Innovation

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.