Review of Sewage Sludge Composting Technologies

Authors

  • Suleiman Ibrahim Khalid Hungarian University of Agriculture and Life Sciences, Doctoral School of Natural Sciences
  • Marianna Makádi University of Debrecen, Agricultural Research and Educational Farm, Research Institute of Nyíregyháza
  • Mustapha Abdulkadir Hungarian University of Agriculture and Life Sciences, Doctoral School of Natural Sciences
  • Tamás Szegi Hungarian University of Agriculture and Life Sciences, Department of Soil Science, Institute of Environmental Sciences

DOI:

https://doi.org/10.33038/jcegi.7335

Keywords:

composting, waste management, recycling waste

Abstract

The recycling of wastewater residues plays a crucial role in the circular economy, a key focus of the EU's 2030 Green Deal. A byproduct of wastewater treatment, sewage sludge, can serve as a sustainable resource for plant nutrition through the application of various composting technologies. Composting helps mitigate pollution by converting organic waste, such as sewage sludge, into compost with the aid of microorganisms. The resulting compost enhances soil quality and health. Several composting approaches—windrow composting, aerated static windrow composting, vermicomposting, and in-vessel composting—each have unique advantages and disadvantages in terms of environmental impact, efficiency, and sustainability. This paper provides an overview of composting methodologies and explores advanced composting technologies for optimizing sewage sludge composting. Aerobic composting is the most widely used method due to its efficiency and ability to eliminate pathogens; however, concerns remain regarding greenhouse gas emissions and nutrient losses. To address these challenges, co-composting, vermicomposting, and two-phase composting have been developed to enhance compost quality and shorten processing times. Despite these advancements, land restrictions, complex technologies, and high costs remain significant limitations. This study emphasizes the importance of microbial dynamics, pathogen elimination, and compost maturation during key composting stages, from the mesophilic to the thermophilic phase, in order to produce stable, nutrient-rich compost. While composting technologies align with sustainability goals, further research is needed to improve efficiency, reduce emissions, and assess potential economic impacts. This review highlights the critical role of composting in achieving waste management and environmental sustainability objectives.

Author Biography

  • Marianna Makádi, University of Debrecen, Agricultural Research and Educational Farm, Research Institute of Nyíregyháza

    corresponding author
    makadim@agr.unideb.hu

References

AHMED, M. – IDRIS, A. – OMER, S. S. (2007): Behaviour and fate of heavy metals in the composting of industrial tannery sludge. Malaysian J Anal Sci, 11(2), 340–350.

AMBADE, B. – SHARMA, S. – SHARMA, Y. (2013): Characterization and open windrow composting of MSW in Jodhpur City, Rajasthan, India. Journal of Environmental Science & Engineering, 55(3), 351–358.

AMUAH, E. E. Y. – FEI-BAFFOE, B. – SACKEY, L. N. A. – DOUTI, N. B. – KAZAPOE, R. W. (2022): A review of the principles of composting: Understanding the processes, methods, merits, and demerits. Organic Agriculture, 12(4), 547–562. https://doi.org/10.1007/s13165-022-00408-z

BARTHOD, J. – RUMPEL, C. – DIGNAC, M. F. (2018): Composting with additives to improve organic amendments. A review. Agronomy for Sustainable Development, 38(2), 17. https://doi.org/10.1007/s13593-018-0491-9

BEZSENYI, A. – SÁGI, G. – MAKÓ, M. – WOJNÁROVITS, L. – TAKÁCS, E. (2021): The effect of hydrogen peroxide on the biochemical oxygen demand (BOD) values measured during ionizing radiation treatment of wastewater. Radiation Physics and Chemistry, 189, 109773. https://doi.org/10.1016/j.radphyschem.2021.109773

BHAVE, P. P. – KULKARNI, B. N. (2019): Effect of active and passive aeration on composting of household biodegradable wastes: A decentralized approach. International Journal of Recycling of Organic Waste in Agriculture, 8(S1), 335–344. https://doi.org/10.1007/s40093-019-00306-7

BLAZY, V. – DE GUARDIA, A. – BENOIST, J. C. – DAUMOIN, M. – LEMASLE, M. – WOLBERT, D. – BARRINGTON, S. (2014): Odorous gaseous emissions as influence by process condition for the forced aeration composting of pig slaughterhouse sludge. Waste Management, 34(7), 1125–1138. https://doi.org/10.1016/j.wasman.2014.03.012

CALVIN, K. – DASGUPTA, D. – KRINNER, G. – MUKHERJI, A. – THORNE, P. W. – TRISOS, C. – ROMERO, J. – ALDUNCE, P. – BARRETT, K. – BLANCO, G. – CHEUNG, W. W. L. – CONNORS, S. – DENTON, F. – DIONGUE-NIANG, A. – DODMAN, D. – GARSCHAGEN, M. – GEDEN, O. – HAYWARD, B. – JONES, C. – PÉAN, C. (2023): IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland. (First). Intergovernmental Panel on Climate Change (IPCC). https://doi.org/10.59327/IPCC/AR6-9789291691647

CESARO, A. – BELGIORNO, V. – GUIDA, M. (2015): Compost from organic solid waste: Quality assessment and European regulations for its sustainable use. Resources, Conservation and Recycling, 94, 72–79. https://doi.org/10.1016/j.resconrec.2014.11.003

COOPERBAND, L. R. (2000): Composting: Art and science of organic waste conversion to a valuable soil resource. Laboratory Medicine, 31(5), 283–290.

Council of the European Communities, CONSIL, 181 OJ L (1986): http://data.europa.eu/eli/dir/1986/278/oj

DE OLIVEIRA, J. D. – ORRICO, A. C. A. – DA SILVA VILELA, R. N. – ORRICO JUNIOR, M. A. P. – ASPILCUETA BORQUIS, R. R. – TOMAZI, M. – LEITE, B. K. V. (2024): Effects of aeration and season on the composting of hatchery waste. Environmental Progress & Sustainable Energy, 43(2), e14269. https://doi.org/10.1002/ep.14269

DENTEL, S. K. – QI, Y. (2014a): Management of Sludges, Biosolids, and Residuals. In Comprehensive Water Quality and Purification (pp. 223–243). Elsevier. https://doi.org/10.1016/B978-0-12-382182-9.00049-9

DIAZ, L. F. – SAVAGE, G. M. – EGGERTH, L. L. – CHIUMENTI, A. (2007a): Chapter 5 Systems used in composting. In Waste Management Series (Vol. 8, pp. 67–87). Elsevier. https://doi.org/10.1016/S1478-7482(07)80008-X

DIAZ, L. F. – SAVAGE, G. M. – EGGERTH, L. L. – CHIUMENTI, A. (2007b): Systems used in composting. In Waste Management Series (Vol. 8, pp. 67–87). Elsevier. https://www.sciencedirect.com/science/article/pii/S147874820780008X

DRAGOMIR, V. D. – DUMITRU, M. (2024): The state of the research on circular economy in the European Union: A bibliometric review. Cleaner Waste Systems, 7, 100127. https://doi.org/10.1016/j.clwas.2023.100127

EPSTEIN, E. (2011): Industrial composting. Environmental Engineering and Facilities Management. New York: Taylor and Francis Group. https://api.taylorfrancis.com/content/books/mono/download?identifierName=doi&identifierValue=10.1201/b10726&type=googlepdf

European Commission (2020): https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52020DC0098

European Commission (2021): https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52021DC0400

European Commission (2021b): https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52021DC0699

European Parliament & Council, CONSIL, 182 OJ L (1999): http://data.europa.eu/eli/dir/1999/31/oj

European Parliament & Council, CONSIL, EP, 312 OJ L (2008): http://data.europa.eu/eli/dir/2008/98/oj

European Parliament & Council, 170 OJ L (2019): http://data.europa.eu/eli/reg/2019/1009/oj

European Parliament & Council, 198 OJ L (2020): http://data.europa.eu/eli/reg/2020/852/oj

FAO. (2021). Large-scale composting. https://www.fao.org/4/y5104e/y5104e07.htm

FAO. (2024). On-farm composting methods. https://www.fao.org/4/y5104e/y5104e05.htm

FLYNN, R. R. P. - HAGEVOORT, R. G. (2013): Whole Animal Composting of Dairy Cattle. https://pubs.nmsu.edu/_d/D108/index.html

GAJALAKSHMI, S. – ABBASI, S. A. (2008): Solid Waste Management by Composting: State of the Art. Critical Reviews in Environmental Science and Technology, 38(5), 311–400. https://doi.org/10.1080/10643380701413633

GARG, V. K. – CHAND, S. – CHHILLAR, A. – YADAV, A. (2005): Growth and reproduction of Eisenia foetida in various animal wastes during vermicomposting. Applied Ecology and Environmental Research, 3(2), 51–59. https://doi.org/10.15666/aeer/0302_051059

GEORGI, K. – EKATERINA, S. – ALEXANDER, P. – ALEXANDER, R. – KIRILL, Y. – ANDREY, V. (2022): Sewage sludge as an object of vermicomposting. Bioresource Technology Reports, 20, 101281. https://doi.org/10.1016/j.biteb.2022.101281

GHAHDARIJANI, A. R. J. – HOODAJI, M. – TAHMOURESPOUR, A. (2022): Vermicomposting of sewage sludge with organic bulking materials to improve its properties. Environmental Monitoring and Assessment, 194(8), 555. https://doi.org/10.1007/s10661-022-10236-z

GONAWALA, S. S. – JARDOSH, H. (2018): Organic Waste in Composting: A brief review. International Journal of Current Engineering and Technology, 8(1), 36–38. https://doi.org/10.14741/ijcet.v8i01.10884

GONZÁLEZ, I. – ROBLEDO-MAHÓN, T. – SILVA-CASTRO, G. A. – RODRÍGUEZ-CALVO, A. – GUTIÉRREZ, M. C. – MARTÍN, M. Á. – CHICA, A. F. – CALVO, C. (2016): Evolution of the composting process with semi-permeable film technology at industrial scale. Journal of Cleaner Production, 115, 245–254. https://doi.org/10.1016/j.jclepro.2015.12.033

GUPTA, R. – GARG, V. (2008): Stabilization of primary sewage sludge during vermicomposting. Journal of Hazardous Materials, 153(3), 1023–1030. https://doi.org/10.1016/j.jhazmat.2007.09.055

HAUG, R. (2018): The practical handbook of compost engineering. Routledge. https://www.taylorfrancis.com/books/mono/10.1201/9780203736234/practical-handbook-compost-engineering-rogertim-haug

HO, T. T. K. – TRA, V. T. – LE, T. H. – NGUYEN, N.-K.-Q. – TRAN, C.-S. – NGUYEN, P.-T. – VO, T.-D.-H. – THAI, V.-N. – BUI, X.-T. (2022): Compost to improve sustainable soil cultivation and crop productivity. Case Studies in Chemical and Environmental Engineering, 6, 100211. https://doi.org/10.1016/j.cscee.2022.100211

HUANG, K. – LI, F. – FU, X. – CHEN, X. (2013): Feasibility of a novel vermitechnology using vermicast as substrate for activated sludge disposal by two epigeic earthworm species. Agricultural Sciences, 04(10), 529–535. https://doi.org/10.4236/as.2013.410071

HUANG, K. – ZHANG, Y. – XU, J. – GUAN, M. – XIA, H. (2022): Feasibility of vermicomposting combined with room drying for enhancing the stabilization efficiency of dewatered sludge. Waste Management, 143, 116–124. https://doi.org/10.1016/j.wasman.2022.02.026

HUBBE, M. A. – NAZHAD, M. – SANCHEZ, C. (2010): Composting as a way to convert cellulosic biomass and organic waste into high-value soil amendments: A review. https://www.cabidigitallibrary.org/doi/full/10.5555/20103364021

INSAM, H. – FRANKE-WHITTLE, I. – GOBERNA, M. (Eds). (2010): Microbes at Work. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-04043-6

JIANG-MING, Z. (2017): Effect of turning frequency on co-composting pig manure and fungus residue. Journal of the Air & Waste Management Association, 67(3), 313–321. https://doi.org/10.1080/10962247.2016.1232666

JIN, Q. – KIRK, M. F. (2018): pH as a Primary Control in Environmental Microbiology: 2. Kinetic Perspective. Frontiers in Environmental Science, 6, 101. https://doi.org/10.3389/fenvs.2018.00101

JONES, P. – MARTIN, M. (2003): A review of the literature on the occurrence and survival of pathogens of animals and humans in green compost. The Waste and Resources Action Programme, 33. https://cesantaclara.ucanr.edu/files/240557.pdf

KANACHI, A. – SATO, N. – SAMARAWEERA, N. – GUNASEKARA, L. – KAWANISHI, R. – KARUNARATHNA, A. (2023): Performance Evaluation of a Full-Scale Forced Aerated Municipal Solid Waste Composting System: A Case Study in Kalutara, Sri Lanka. In K. Ujikawa – M. Ishiwatari, – E. V. Hullebusch (Eds), Environment and Sustainable Development (pp. 157–165). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-4101-8_12

KOSOBUCKI, P. – CHMARZYŃSKI, A. – BUSZEWSKI, B. (2000): Sewage Sludge Composting. Polish Journal of Environmental Studies, 9(4), 243–248.

KROGMANN, U. – KÖRNER, I. – DIAZ, L. F. (2010): Composting: Technology. In T. H. Christensen (Ed.), Solid Waste Technology & Management (pp. 533–568). John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470666883.ch35

KULIKOWSKA, D. – GUSIATIN, Z. M. (2015): Sewage sludge composting in a two-stage system: Carbon and nitrogen transformations and potential ecological risk assessment. Waste Management, 38, 312–320. https://doi.org/10.1016/j.wasman.2014.12.019

LIEW, C. S. – YUNUS, N. M. – CHIDI, B. S. – LAM, M. K. – GOH, P. S. – MOHAMAD, M. – SIN, J. C. – LAM, S. M. – LIM, J. W. – LAM, S. S. (2022): A review on recent disposal of hazardous sewage sludge via anaerobic digestion and novel composting. Journal of Hazardous Materials, 423, 126995. https://doi.org/10.1016/j.jhazmat.2021.126995

LIM, L. Y. – BONG, C. – LEE, C. T. – KLEMEŠ, J. – LIM, J. S. – SARMIDI, M. (2017): Review on the Current Composting Practices and the Potential of Improvement using Two-Stage Composting. Chemical Engineering Transactions, 61, 1051–1056. https://doi.org/10.3303/CET1761173

LOFRANO, G. – PEDRAZZANI, R. – LIBRALATO, G. – CAROTENUTO, M. (2017): Advanced Oxidation Processes for Antibiotics Removal: A Review. Current Organic Chemistry, 21(12), 1054–1067. https://doi.org/10.2174/1385272821666170103162813

LOPES, I. G. – DE SOUZA, L. F. – DA CRUZ, M. C. P. – VIDOTTI, R. M. (2019): Composting as a strategy to recycle aquatic animal waste: Case study of a research centre in São Paulo State, Brazil. Waste Management & Research: The Journal for a Sustainable Circular Economy, 37(6), 590–600. https://doi.org/10.1177/0734242X19830170

LU, H. R. – QU, X. – EL HANANDEH, A. (2020): Towards a better environment - the municipal organic waste management in Brisbane: Environmental life cycle and cost perspective. Journal of Cleaner Production, 258, 120756. https://doi.org/10.1016/j.jclepro.2020.120756

MATAMOROS, V. – HIJOSA, M. – BAYONA, J. M. (2009): Assessment of the pharmaceutical active compounds removal in wastewater treatment systems at enantiomeric level. Ibuprofen and naproxen. Chemosphere, 75(2), 200–205. https://doi.org/10.1016/j.chemosphere.2008.12.008

MEENA, A. L. – KARWAL, M. – DUTTA, D. – MISHRA, R. P. (2021): Composting: Phases and factors responsible for efficient and improved composting. Agriculture and Food: E-Newsletter, 1, 85–90.

MENG, L. – XU, C. – WU, F. – HUHE. (2022): Microbial co-occurrence networks driven by low-abundance microbial taxa during composting dominate lignocellulose degradation. Science of The Total Environment, 845, 157197. https://doi.org/10.1016/j.scitotenv.2022.157197

MICHEL, F. – O’NEILL, T. – RYNK, R. – GILBERT, J. – SMITH, M. – ABER, J. – KEENER, H. (2022): Forced aeration composting, aerated static pile, and similar methods. In The Composting Handbook (pp. 197–269). Elsevier. https://doi.org/10.1016/B978-0-323-85602-7.00007-8

MISRA, R. V. – ROY, R. N. – HIRAOKA, H. (2003): On-farm composting methods. Rome, Italy: UN-FAO. https://vtechworks.lib.vt.edu/items/b7ba3abc-22c0-44ba-97c8-1b0613c7111a

MOSHARAF, M. K. – GOMES, R. L. – COOK, S. – ALAM, M. S. – RASMUSSSEN, A. (2024): Wastewater reuse and pharmaceutical pollution in agriculture: Uptake, transport, accumulation and metabolism of pharmaceutical pollutants within plants. Chemosphere, 364, 143055. https://doi.org/10.1016/j.chemosphere.2024.143055

MU, D. – HOROWITZ, N. – CASEY, M. – JONES, K. (2017): Environmental and economic analysis of an in-vessel food waste composting system at Kean University in the U.S. Waste Management, 59, 476–486. https://doi.org/10.1016/j.wasman.2016.10.026

MUSCARELLA, S. M. – BADALUCCO, L. – LAUDICINA, V. A. – WANG, Z. – MANNINA, G. (2023): Wastewater treatment sludge composting. In Current Developments in Biotechnology and Bioengineering (pp. 115–136). Elsevier. https://doi.org/10.1016/B978-0-323-99920-5.00008-1

NELSON, V. L. – CROWE, T. G. – SHAH, M. A. – WATSON, L. G. (2006): Temperature and turning energy of composting feedlot manure at different moisture contents in southern Alberta. 48, 613–637.

NORDAHL, S. L. – PREBLE, C. V. – KIRCHSTETTER, T. W. – SCOWN, C. D. (2023): Greenhouse Gas and Air Pollutant Emissions from Composting. Environmental Science & Technology, 57(6), 2235–2247. https://doi.org/10.1021/acs.est.2c05846

QUINTERN, M. (2014): Full scale vermicomposting and land utilisation of pulpmill solids in combination with municipal biosolids (sewage sludge). 65–76. https://doi.org/10.2495/WM140061

QUINTERN, M. – MORLEY, M. (2017): Vermicomposting of Biosolids and Beneficial Reuse—New Zealand Commercial Case Studies from 4 Communities over 8 Years. Proceedings of the Water Environment Federation, 2017(1), 1084–1098. https://doi.org/10.2175/193864717821496112

RASAPOOR, M. – ADL, M. – POURAZIZI, B. (2016): Comparative evaluation of aeration methods for municipal solid waste composting from the perspective of resource management: A practical case study in Tehran, Iran. Journal of Environmental Management, 184, 528–534. https://doi.org/10.1016/j.jenvman.2016.10.029

RAZA, S. – AHMAD, J. (2016): Composting process: A review. International Journal of Biological Research, 4(2), 102–104.

ROBERTS, J. – KUMAR, A. – DU, J. – HEPPLEWHITE, C. – ELLIS, D. J. – CHRISTY, A. G. – BEAVIS, S. G. (2016): Pharmaceuticals and personal care products (PPCPs) in Australia’s largest inland sewage treatment plant, and its contribution to a major Australian river during high and low flow. Science of The Total Environment, 541, 1625–1637. https://doi.org/10.1016/j.scitotenv.2015.03.145

ROSENFELD, P. – GREY, M. (2004): Measurement of Biosolids Compost Odor Emissions from a Windrow, Static Pile, and Biofilter. Water Environment Research, 76(4), 310–315. https://doi.org/10.2175/106143004X141898

RYNK, R. – RICHARD, T. L. (2001): Commercial compost production systems. Compost Utilization in Horticultural Cropping Systems, 51–93.

SAMAL, K. – MAHAPATRA, S. – HIBZUR ALI, M. (2022): Pharmaceutical wastewater as Emerging Contaminants (EC): Treatment technologies, impact on environment and human health. Energy Nexus, 6, 100076. https://doi.org/10.1016/j.nexus.2022.100076

SENESI, N. – PLAZA, C. – BRUNETTI, G. – POLO, A. (2007): A comparative survey of recent results on humic-like fractions in organic amendments and effects on native soil humic substances. Soil Biology and Biochemistry, 39(6), 1244–1262. https://doi.org/10.1016/j.soilbio.2006.12.002

SLORACH, P. C. – JESWANI, H. K. – CUÉLLAR-FRANCA, R. – AZAPAGIC, A. (2019): Environmental and economic implications of recovering resources from food waste in a circular economy. Science of The Total Environment, 693, 133516. https://doi.org/10.1016/j.scitotenv.2019.07.322

SPINOSA, L. – AYOL, A. – BAUDEZ, J.-C. – CANZIANI, R. – JENICEK, P. – LEONARD, A. – RULKENS, W. – XU, G. – VAN DIJK, L. (2011): Sustainable and Innovative Solutions for Sewage Sludge Management. Water, 3(2), 702–717. https://doi.org/10.3390/w3020702

STELMACHOWSKI, M. – JASTRZȨBSKA, M. – ZARZYCKI, R. (2003): In-vessel composting for utilizing of municipal sewage-sludge. Applied Energy, 75(3–4), 249–256. https://doi.org/10.1016/S0306-2619(03)00038-2

TÓTH, G. – VERES, Z. – LAKATOS, G. – BALÁZSY, S. (2023): The Elimination of Pharmaceutical Agents with Microbiological Treatment from Municipal Sewage. Sustainability, 15(4), 2991. https://doi.org/10.3390/su15042991

TURLEJ, T. – BANAŚ, M. (2018a): Sustainable management of sewage sludge. E3S Web of Conferences, 49, 00120. https://doi.org/10.1051/e3sconf/20184900120

TUROVSKIY, I. S. – MATHAI, P. K. (2006): Wastewater Sludge Processing (1st edn). Wiley. https://doi.org/10.1002/047179161X

USEPA, O. (2015, August 19): Approaches to Composting [Overviews and Factsheets]. https://www.epa.gov/sustainable-management-food/approaches-composting

USEPA, O. (2017): Types of Composting and Understanding the Process [Overviews and Factsheets]. https://19january2017snapshot.epa.gov/sustainable-management-food/types-composting-and-understanding-process

VARMA, V. S. – DAS, S. – SASTRI, C. V. – KALAMDHAD, A. S. (2017): Microbial degradation of lignocellulosic fractions during drum composting of mixed organic waste. Sustainable Environment Research, 27(6), 265–272. https://doi.org/10.1016/j.serj.2017.05.004

VRÎNCEANU, N. – NEGRU, P. – SAFTA, E. – STAN, V. (2020): Improving sewage sludge compost quality by vermicomposting. LXIII, 267–272.

WALLING, E., – VANEECKHAUTE, C. (2020): Greenhouse gas emissions from inorganic and organic fertilizer production and use: A review of emission factors and their variability. Journal of Environmental Management, 276, 111211. https://doi.org/10.1016/j.jenvman.2020.111211

WANG, L. – FENG, Z. – WANG, Z. – WANG, Y. – WANG, Z. (2025): Aerobic composting characteristics of corn straw and pig manure under dynamic aeration. Environmental Technology, 46(3), 443–452. https://doi.org/10.1080/09593330.2024.2359730

WEI, Y.-S. – FAN, Y.-B. – WANG, M.-J. (2001): A cost analysis of sewage sludge composting for small and mid-scale municipal wastewater treatment plants. Resources, Conservation and Recycling, 33(3), 203–216. https://doi.org/10.1016/S0921-3449(01)00087-8

WICHUK, K. M. – MCCARTNEY, D. (2013): Compost stability and maturity evaluation—A literature review. Journal of Environmental Engineering and Science, 8(5), 601–620. https://doi.org/10.1680/jees.2013.0063

WIŚNIOWSKA, E. (2019): Sludge activation, conditioning, and engineering. In Industrial and Municipal Sludge (pp. 181–199). Elsevier. https://doi.org/10.1016/B978-0-12-815907-1.00009-X

YANG, L. – JIAO, Y. – XU, X. – PAN, Y. – SU, C. – DUAN, X. – SUN, H. – LIU, S. – WANG, S. – SHAO, Z. (2022): Superstructures with Atomic-Level Arranged Perovskite and Oxide Layers for Advanced Oxidation with an Enhanced Non-Free Radical Pathway. ACS Sustainable Chemistry & Engineering, 10(5), 1899–1909. https://doi.org/10.1021/acssuschemeng.1c07605

YUVARAJ, A. – KARMEGAM, N. – TRIPATHI, S. – KANNAN, S. – THANGARAJ, R. (2020): Environment-friendly management of textile mill wastewater sludge using epigeic earthworms: Bioaccumulation of heavy metals and metallothionein production. Journal of Environmental Management, 254, 109813. https://doi.org/10.1016/j.jenvman.2019.109813

ZHANG, L. – SUN, X. (2014): Effects of rhamnolipid and initial compost particle size on the two-stage composting of green waste. Bioresource Technology, 163, 112–122. https://doi.org/10.1016/j.biortech.2014.04.041

ZHOU, Y. – SELVAM, A. – WONG, J. W. C. (2018): Chinese medicinal herbal residues as a bulking agent for food waste composting. Bioresource Technology, 249, 182–188. https://doi.org/10.1016/j.biortech.2017.09.212

Downloads

Published

2025-12-02

Issue

Section

Cikk szövege

How to Cite

Khalid, S. I., Makádi, M., Abdulkadir, M., & Szegi, T. (2025). Review of Sewage Sludge Composting Technologies. Journal of Central European Green Innovation, 13(2), 45–62. https://doi.org/10.33038/jcegi.7335