Plant Protection Practises and Their Impact on Environment

Szerzők

  • Ismet Yildirim Pamukkale University

DOI:

https://doi.org/10.33038/jcegi.3399

Kulcsszavak:

plant protection, pesticides, environmental pollution, non-target organism, crop production

Absztrakt

The world population is increasing by 81 million every year and people need more agricultural production to avoid hunger. Despite modern farming methods, where advanced technologies and new production systems such as soilless agriculture are applied, production seems far from meeting the nutritional needs of people today or in the future. Although phytopathogens, insects and weeds, which cause significant yield and quality losses in agricultural products, are struggled today, it is estimated that the total loss of crops is 36.5% in the world every year due to these pests. Plant protection practices (cultural measures, physical control, legal measures, biological control, chemical control, alternative control) are carried out against pests in order to prevent product yield and quality losses in agriculture. Among these applications, chemical control is the most effective control method against pests, the results of which can be seen in a short time. However, especially in conventional agriculture, irregular and intensive pesticide applications made to protect yield and quality with economic concerns cause environmental pollution and deterioration in soil, water resources and troposphere ecosystems. In this review, the effects of plant protection practices on non-target organisms in different ecosystems are presented.

Információk a szerzőről

  • Ismet Yildirim, Pamukkale University

    professor
    ismety@pau.edu.tr

Hivatkozások

AGGARWAL, A. – SHARMA, D. – PARKASH, V. – SHARMA, S. – GUPTA, A. (2005): Effect of Bavistin and Dithane m-45 on the mycorrhizae and rhizosphere microbes of sunflower. Helia, 28(42): 75–88. https://doi.org/10.2298/hel0542075a

ARORA, S. – SAHNI, D. (2016): Pesticides effect on soil microbial ecology and enzyme activity- An overview. Journal of Applied and Natural Science 8 (2): 1126–1132.

ARORA, V. K. – SINGH, C. B. – SIDHU, A. S. – THIND, S. S. (2011): Irrigation, tillage and mulching effects on soybean yield and water productivity in relation to soil texture. Agric Water Manag, 98(4): 563–568.

BLOWES, W. M. (1987): Effect of ryegrass root residues, knock-down herbicides, and fungicides on the emergence of barley in sandy soils. Australian Journal of Experimental Agriculture, 27: 785–790. https://doi.org/10.1071/EA9870785

BRIMECOMBE, M. J. – DE LEIJ, F. A. A. M. – LYNCH, J. M. (2007): Rhizodeposition and Microbial Populations. Chapter 3 in The Rhizosphere: Biochemistry and Organic Substances at the Soil-Plant Interface, second edition, edid by R. Pinton, Z. Varanini, P. Nannipieri, CRC Press. https://doi.org/10.1093/aob/mcp166

BRYDEN, J. – GILL, R. J. – MITTON, R. A. – RAINE, N. E. – JANSEN, V. A. (2013): Chronic sublethal stress causes bee colony failure. Ecology Letters, 16: 1463–1469. https://doi.org/10.1111/ele.12188

CONWAY, G. R. – PRETTY, J. N. (2009): Unwellcome Harvest: Agriculture and pollution. Earthscan Publications Ltd, London, pp 645.

CROWLEY, D. E. – KRAEMER, S. M. (2007): Function of Siderophores in the Plant Rhizosphere. Chapter 7 in The Rhizosphere: Biochemistry and Organic Substances at the Soil-Plant Interface, second edition, edid by R. Pinton, Z. Varanini, P. Nannipieri, CRC Press. https://doi.org/10.1093/aob/mcp166

DELEN, N. (2016): Fungisitler. Nobel Akademik Yayıncılık Eğitim Danışmanlık Tic. Ltd., 2. Baskı, Ankara, pp. 534.

DHANANJAYAN, V. – JAYANTHI, P. – JAYAKUMAR, S. – RAVICHANDRAN, B. (2020): 11 Agrochemicals Impact on Ecosystem and Bio-monitoring. in: Resources Use Efficiency in Agriculture, Eds: S. Kumar, R. S. Meena, M. K. Jhariya, Springer Nature Singapore Pte Ltd. https://doi.org/10.1007/978-981-15-6953-1_11349

DHANANJAYAN, V. – RAVICHANDRAN, B. – RAJMOHAN, H. R. (2012) Organochlorine pesticide residues in blood samples of agriculture and sheep wool workers in Bangalore (rural), India. Bull Environ Contam Toxicol 88(4): 497–500. https://doi.org/10.1007/s00128-012-0546-6

DHANANJAYAN, V. (2012): Acetylcholinesterase and butyrylcholinesterase activity in brain and plasma of several species of birds from India. Res Rev J Toxicol, 2(1): 1–9. https://doi.org/10.1016/s1096-4959(03)00048-4

DIX, N. J. – WEBSTER, J. (1995): Aquatic Fungi. Fungal Ecology, 225–283. https://doi.org/10.1007/978-94-011-0693-1_9

ECOBICHON, D. J. (1991): Toxic effects of pesticides. In: Amdur MO, Donl J, Klassen CD, editors. Casarett and Doull’s toxicology. 4th edition. New York: Pergamon Press. p. 2–18.

EDWARDS, C. A. – BOHLEN, P. J. (1996): Biology and Ecology of Earthworms. Chapman & Hall, London, 426 pp.

EXTOXNET (1996): Pesticid İnformation Profile; Mancozeb. Extoxnet, Itaca N.Y., USA. September, 3.

FISHEL, F. M. (2013): Pesticides effects on non-target organisms. PI-85. Pesticide information office, Florida Cooperative Extension Service, IFAS, University of Florida, Gainesville, FL, USA; 2011. http://edis.ifas.ufl.edu/pi122.

GALLAI, N. – SALLES, J. M. – SETTELE, J. – VAISSIÈRE, B. E. (2009): Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecological Economics, 68: 810–821. https://doi.org/10.1016/j.ecolecon.2008.06.014

GILL, R. J. – RAINE, N. E. (2014): Chronic impairment of bumblebee natural foraging behaviour induced by sublethal pesticide exposure. Functional Ecology, 28, 1459–1471.

GİLL, R. J. – RAMOS-RODRİGUEZ, O. – RAİNE, N. E. (2012): Combined pesticide exposure severely affects individual-and colony-level traits in bees. Nature, 491: 105–108. https://doi.org/10.1038/nature11585

HENRY, M. – BÉGUIN, M. – REQUIER, F. – ROLLIN, O. – ODOUX, J. F. – AUPINEL, P. – APTEL, J. – TCHAMITCHIAN, S. – DECOURTYE, A. (2012): A Common Pesticide Decreases Foraging Success and Survival in Honey Bees. Science, 336: 348. https://doi.org/10.1126/science.1215039

Pesticides use, pesticides trade and pesticides indicators. https://www.fao.org/3/cc0918en/cc0918en.pdf FAOSTAT Pesticides,erişim (06.11.2022)

HUDSON, R. H. – TUCKER, R. K. – HAEGELE, M. A. (1984): Handbook of Acute Toxicity of Pesticides to Wildlife, Resource Publication 153. U.S. Department of Interior, Fish and Wildlife Service, Washington, DC., 6–54.

HUSSAIN, S. – SIDDIQUE, T. – SALEEM, M. – ARSHAD, M. – KHALID, A. (2009): Chapter 5 Impact of Pesticides on Soil Microbial Diversity, Enzymes, and Biochemical Reactions. Advances in Agronomy, 102: 159-200. https://doi.org/10.1016/S0065-2113(09)01005-0

HUSSAİN, S. – SİDDİQUE, T. – SALEEM, M. – ARSHAD, M. – KHALİD, A. (2009): Impact of pesticides on soil microbial diversity, enzymes, and biochemical reactions. Adv Agron 102: 159–200.

KIDD, H. – JAMES, D. R. (1991): The Agrochemicals Handbook, 3rd edn. Royal Society of Chemistry Information Services, Cambridge, UK, 6–10.

KILINÇ, K. – KÖSEDAĞ, O. – DİRİK, g. – VURALIN, A. – YILDIRIM, C. – YILDIRIM, İ. (2007): Çanakkale Tarım Alanlarında Kimyasal Kullanımdan Kaynaklanan Sorunlar. Ziraat Mühendisleri Odası III. Öğrenci Kurultayı, Bildiriler Kitabı, 91-94.

KIRK, I. W. (2000): Aerial spray drift from different formulations of glyphosate. Transactions of the ASAE, 43(3): 555.

KLUSER, S. – NEUMANN, P. – CHAUZAT, M. P. et al. (2010): UNEP Emerging Issues: Global honey bee Colony disorders and other threats to insect pollinators. Unige: 32251.

MAURYA, P. K. – MALIK, D. S. – SHARMA, A. (2019): Chapter 9 Impacts of pesticide application on aquatic environments and fish diversity. In: Contaminants in Agriculture and Environment: Health Risks and Remediation, Vol. 1, eds by V. Kumar, R. Kumar, J Singh, P. Kumar, ISBN: 978-81-942017-0-0. https://doi.org/10.26832/AESA-2019-CAE-0162-09

MEENA, R. S. – KUMAR, S. – DATTA, R. – LAL, R. – VIJAYAKUMAR, V. – BRTNICKY, M. – SHARMA, M. P. – YADAV, G. S. et al. (2020): Impact of Agrochemicals on Soil. Microbiota and Management: A Review. Land, MDIP, 9: 34. https://doi.org/10.3390/land9020034

MEKWATANAKARN, P. – SİVASİTHAMPARAM, K. (1987): Effect of certain herbicides on saprophytic survival and biological suppression of the take-all fungus. New Phytology, 106: 153-159. https://doi.org/10.1111/j.1469-8137.1987.tb04799.x

MOFFAT, C. – PACHECO, J. G. – SHARP, S. – SAMSON, A. J. – BOLLAN, K. A. – HUANG, J. – BUCKLAND, S. T. – CONNOLLY, C. N. (2015): Chronic exposure to neonicotinoids increases neuronal vulnerability to mitochondrial dysfunction in the bumblebee (Bombus terrestris). The FASEB Journal, 29: 2112–2119. https://doi.org/10.1096/fj.14-267179

MONKIEDJE, A. – SPITELLER, M. (2005): Degradation of Metalaxyl and Mefenoxam and Efects on the Microbiological Properties of Tropical and Temperate Soils. Int. J. Environ. Res. Public. Health, 2: 272–285. https://doi.org/10.3390/ijerph2005020011

MOSCHET, C. – WITTMER, I. – SIMOVIC, J. – JUNGHANS, M. – PIAZZOLI, A. – SINGER, H. – STAMM, C. – LEU, C. – HOLLENDER, J. (2014): How a complete pesticide screening changes the assessment of surface water quality. Environ. Sci.. Tech., 48: 5423−5432. https://doi.org/10.1021/es500371t

MUNOZ-LEOZ, B. – RUİZ-ROMERA, E. – ANTIGUEDAD, I. – TEBUCONAZOLE, G. C. (2011): Application decreases soilmicrobial biomass and activity. Soil Biol Biochem, 43: 2176–2183. https://doi.org/10.1016/j.soilbio.2011.07.001

OLIVEIRA, R. B. D., – ANTUNIASSI, U. R. – MOTA, A. A. – CHECHETTO, R. G. (2013): Potential of adjuvants to reduce drift in agricultural spraying. Engenharia Agricola, 33(5): 986–992. https://doi.org/10.1590/S0100-69162013000500010

PADMANABHAN, S.Y. (1973): The Great Bengal Famine. Annual Review of Phytopathology. 11: 11–24. https://doi.org/10.1146/annurev.py.11.090173.000303

PAMPULHA, M. E. – OLIVEIRA, A. (2006): Impact of an herbicide combination of bromoxynil and prosulfuron on soil microorganisms. Curr Microbiol. 53: 238–243. https://doi.org/10.1007/s00284-006-0116-4

PANAP (1996): Endosulfan Datasheet. Pesticide Action Network Asia and the Pacific, Penang, Malaysia, June, 6.

PAOLETTI, M. G. (1999): The role of earthworms for assessment of sustainability and as bioindicators. Agric. Ecosyst. Environ. 74: 137–155. https://doi.org/10.1016/S0167-8809(99)00034-1

PATNAIK, G. K. – KANUNGO, P. K. – ADHYA, T. K. – RAO, V. R. (1996): Effect of repeated applications of gamma-hexachlorocyclohexane (gamma-HCH) on nitrogenase activity and nitrogen-fixing bacteria associated with rhizosphere of tropical rice. Microbiol. Res. 151, 375–378. https://doi.org/10.1016/S0944-5013(96)80006-1

PATNAIK, G. K. – KANUNGO, P. K. – MOORTHY, B. T. S. – MAHANA, P. K. – ADHYA, T. K. – RAO, V. R. (1995): Effect of herbicides on nitrogen-fixation (C2H2 reduction) associated with rice rhizosphere. Chemosphere 30, 339–343. https://doi.org/10.1016/0045-6535(94)00401-F

PİMENTAL, D. (1995). Amounts of pesticides reaching target pests: Environmental impacts and ethics. Journal of Agricultural and Environmental Ethics, 8: 17–29.

PİMENTEL, D. – LEVİTAN, L. (1986): Pesticides: amounts applied and amounts reaching pests. Bioscience, 36: 86–91.

ROANE, M. K. – GRIFFIN, G. J. – ELKINS, J. R. (1986): Chestnut Blight, Other Endothia Diseases, and the Genus Endothia. APS monograph series. APS Press, American Phytopathological Society. pp. 53. ISBN 978-0-89054-073-2.

RODRI´GUEZ-CASTELLANOS, L. – SANCHEZ-HERNANDEZ, J. C. (2007): Earthworm biomarkers of pesticide contamination: Current status and perspectives. J. Pestic. Sci., 32(4), 360–371. http://dx.doi.org/10.1584/jpestics.R07-14

ROLLİNS, D. – FUCHS, T. W. – HANSELKA, C. W. – WİNN, J. (1994): Reducing Pesticide Risks to Wildlife in Sorgum and Small Grains. Texas Cooperative Extension, The Texas A and M University System, B–5095.

SAHA, R. – SAHA, N. – DONOFRIO, R. S. – BESTERVELT, L. L. (2012): Microbial siderophores: a mini review. Journal of Basic Microbiology 52: 1–15. https://doi.org/10.1002/jobm.201100552

SAMUELSON, E. E. W. – CHEN-WISHART, Z. P. – GILL, R. J. – LEADBEATER, E. (2016): Effect of acute pesticide exposure on bee spatial working memory using an analogue of the radial-arm maze. Scintific Reports, 6:38957. https://doi.org/10.1038/srep38957

SEBİOMO, A. – OGUNDERO, V. W. – BANKOLE, S. A. (2011): Effect of four herbicides on microbial population, soil organic matter and dehydrogenase activity. Afr J Biotechnol 10(31), 770-778. https://doi.org/10.4314/AJB.V10I5

SOLAIMALAI, A. – RAMESH, R. T. – BASKAR, M. (2004): Pesticides and environment. In: Environ Contam Bioreclam, pp 345–382.

SRINIVASULU, M. – MOHIDDIN, G. J. – MADAKKA, M. – RANGASWAMY, V. (2012): Effect of pesticides on the population of Azospirillum sp. and on ammonification rate in two soils planted to groundnut (Arachis hypogaea L.). Tropi Ecol 53: 93–104.

SRIVASTAVA, P. – BALHARA, M. – GIRI, B. (2020): Soil Health in India: Past History and Future Perspective. In: Soil Health, Soil Biology 59, eds. by B. Giri, A. Varma, Springer Nature Switzerland.

STRANGE, R. N. (2003): Introduction to Plant Pathology. John Wiley & Sons Ltd, England, pp. 439.

SUNTIO, L. R. – SHİU, W. Y. – MACKAY, D. – SEİBER, J. N. – GLOTFELTY, D. (1988): Critical Review of Henry's Law Constants fro Pesticides. Reviews of Environmental Contamination and Toxicology, 103: 1–59.

TİRYAKİ, O. – CANHİLAL, R. – HORUZ, S. (2010): Tarım ilaçları kullanımı ve riskleri. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26(2): 154–169.

TOROS, S. – MADEN, S. – SÖZERİ, S. (2001): Tarımsal Savaş Yöntem ve İlaçları. AÜ Ziraat Fak. Ders Kitabı, Ankara, pp. 417.

TOROS, S. – MADEN, S. – SÖZERİ, S. (2001): Tarımsal Savaşım Yöntem ve İlaçları. Ankara Ün. Ziraat Fak. Ders Kitabı, Yayın no: 1520, Ders Kitabı: 473.

WANG, H. – HE, X. – SONG, J. – WANG, Z. – WANG, C. – WANG, S. – WU, R. – MENG, Y. (2018): Drift potential of UAV with adjuvants in aerial applications. Int J Agric & Biol Eng, 11(5): 54–58.

WARE, G. W. (1989): The Pesticide Book. Thomson Publlication, USA, pp 336.

WHEELER, W. B. (2002): Pesticides in Agriculture and the Environment. CRC Press, pp. 360. https://doi.org/10.1201/9780203909430

XU, N. – QU, Q. – ZHANG, Z. – YUAN, W. – CUİ, H. – SHEN, Y. – LİN, W. – LU, T. – QİAN, H. (2020): Effects of residual S-metolachlor in soil on the phyllosphere microbial communities of wheat (Triticum aestivum L.). Science of the Total Environment 748: 141342 https://doi.org/10.1016/j.scitotenv.2020.141342

YAO, X. – MIN, H. – LU, Z. – YUAN, H. (2006): Influence of acetamiprid on soil enzymatic activities and respiration. Eur J Soil Biol. 42(2): 120–126. http://dx.doi.org/10.1016/j.ejsobi.2005.12.001

YATES, W. E. – AKESSON, N. B. (1973): Reducing pesticide chemical drift. In Pesticide Formulations, edited by J.W. Van Valkenburg, pp. 275-341. New York: Marcel Dekker.

YILDIRIM, İ. – ÖZCAN, H. (2007): Determination of pesticide residues in water and soil resources of Troia (Troy). Fresenius Environ. Bull., 16 (1): 63–70.

YILDIZ, M. – GÜRKAN, O. – TURGUT, C. – KAYA, Ü. – ÜNAL, G. (2005): Tarımsal Savaşımda Kullanılan Pestisitlerin Yol Açtığı Çevre Sorunları VI. Türkiye Ziraat Mühendisliği Teknik Kongresi, TMMOB Ziraat Mühendisleri Odası, Ankara, 3–7 Ocak 2005

YILMAZ, A. – TAKKABULAN, A. – BUDAK, İ. (2020): T.C. Tarım ve Orman Bakanlığı Zirai Mücadele Merkez Araştırma Enstitüsü Müdürlüğü, Teknik Rapor, Rapor no: 2020/143, Anakara.

ZHANG, B. – BAI, Z. – HOEFEL, D. – TANG, L. – WANG, X. – LI, B. – LI, Z. – ZHUANG, G. (2009): The impacts of cypermethrin pesticide application on thenon-target microbial community of the pepperplant phyllosphere. Sci Total Environ, 407: 1915–1922. https://doi.org/10.1016/j.scitotenv.2008.11.049

Letöltések

Megjelent

2023-06-14

Folyóirat szám

Rovat

Cikk szövege

Hogyan kell idézni

Plant Protection Practises and Their Impact on Environment. (2023). Journal of Central European Green Innovation, 11(1), 25-38. https://doi.org/10.33038/jcegi.3399