Ázsiai gyapjúfű (Eriochloa villosa [Thunb.] Kunth) hajtás- és gyökérkivonatok allelopatikus hatásának vizsgálata fehér mustár (Sinapis alba L.) csírázási teszttel

Szerzők

Kulcsszavak:

ázsiai gyapjúfű, allelopátia, csírázás

Absztrakt

A növények az egymással folytatott versengésben gyakran használnak különféle vegyületeket, amelyekkel befolyásolják a környezetükben élő más növények csírázását, fejlődését. Ezt allelopátiának nevezzük. Ezzel a képességgel az adott növény ökológiai előnyhöz jut a többi növényfajjal szemben. Vizsgálatunkban az ázsiai gyapjúfű (Eriochloa villosa [Thunb.] Kunth) különböző részeiből vett minták allelopatikus hatását tanulmányoztuk, különböző koncentrációkban, desztillált vizet tartalmazó kontroll mellett. Tesztnövény a fehér mustár (Sinapis alba L.) volt. A kapott eredmények igazolták a gyökér- és hajtáskivonatok jelentős allelopatikus hatását. Eredményeink rámutatnak, hogy a vizsgált veszélyes gyomnövény az allelopátia frontján is komoly konkurenciája lehet haszonnövényeinknek, a gazdálkodóknak jelentős veszteségeket okozva.

Hivatkozások

Bhowmik, P. C. and Doll, J. D. 1982. Corn and soybean response to allelopathic effect of weed and crop residues. Agronomy J. 74. 601–606. https://doi.org/10.2134/agronj1982.00021962007400040005x

Bhowmik, P. C. and Doll, J. D. 1983. Growth analyses of corn and soybean response to allelopathic effects of weed residues at various temperature and photosynthetic photon flux densities. J. Chem. Ecol. 9 8. 1263–1280. https://doi.org/10.1007/BF00982228

Brückner, D. J., Lepossa A. és Herpai Z. 2001. Parlagfű-allelopátia: közvetett kölcsönhatások. Növénytermesztés 50. 231–236.

Brückner, D. J. és Szabó, L. Gy. 2001. Az allelopátia modern értelmezése (Szemle). Kitaibelia 6 1. 93–106.

Chon, S. U., Kim, Y. M. and Lee, J. C. 2003. Herbicidal potencial and quantification of causative allelochemicals from several Compositae weeds. Weed Research. 43. 444–450. https://doi.org/10.1046/j.0043-1737.2003.00361.x

Chou, C., Fu, C., Li, S.and Wang, Y. 1998. Allelopathic potential of Acacia confusa and related species in Taiwan. J. Chem. Ecol. 24. 12. 2131–2150. https://doi.org/10.1023/A:1020745928453

Cruz-Ortega, R., Anaya, A. L., Hernández-Bautista, B. E. and Laguna-Hernández, G. 1998. Effects of allelochemical stress produced by Syncios deppei on seedling ultrastructure of Phaseolus vulgaris and Cucurbita ficifolia. J. Chem. Ecol. 24(12). 2039–2057. https://doi.org/10.1023/A:1020733625727

Drost, D. C. and Doll, J. D. 1980. The allelopathic effect of yellow nutsedge (Cyperus esculentus) on corn (Zea mays) and soybean (Glycine max). Weed Sci. 28(2). 229–233. https://doi.org/10.1017/S004317450005517X

Gonzales, L., Souto, X. C. and Reigosa, M. J. 1997. Weed control by Capsicum annuum. Allelopathy J. 4(1). 101–110.

Inredjit, M. K. and Foy, C. L. 2001. On the significance of field studies in allelopathy. Weed Technology. 15. 792–797. https://doi.org/10.1614/0890-037X(2001)015[0792:OTSOFS]2.0.CO;2

Kazinczi, G., Béres, I., Hunyadi, K., Mikulás, J. és Pölös, E. 1991. A selyemmályva (Abutilon theophrasti Medic.) allelopatikus hatásának és kompetitív képességének vizsgálata. Növénytermelés 40(4). 321–331.

Liu, D. L. and Christians, N. E. 1994. Isolation and identification of root-inhibiting compounds from corn gluten hydrolysate. Plant Growth Regulation 13. 227–230. https://doi.org/10.1007/BF00226041

Liu, D. L. and Christians, N. E. 1996. Bioactivity of a pentapeptid isolated from corn gluten hidrolisate on Lolium perenne L. Plant Growth Regulation 15. 13–15. https://doi.org/10.1007/BF00213129

Liu ,D. L., Christians, N. E. and Garbutt, J. T. 1994. Herbicidal activity of hidrolised corn gluten meal on three grass species under controlled environments. Plant Growth Regulation 13. 221–226. https://doi.org/10.1007/BF00226040

Mallik, M. A. B., Puchala, R. and Grosz, F. A. 1994. A growth inhibitory factor from lambsquaters (Chenopodium album). J. Chem. Ecol. 20(4). 957–967. https://doi.org/10.1007/BF02059590

Mikulás, J. 1981. A fenyércirok (Sorghum halepense L.) allelopátiája a gyom és kultúrnövényre.Növényvédelem 17(10–11). 413–418.

Molisch, H. 193 7. Der Einfluß einer Pflanze auf die andere Allelopathie. Gustav Fischer Verlag, Jena, 106.

Narwal, S. S. 1994. Allelopathy in crop production. Scientific Publishers, Jodhpur. 285.

Rice, E. L. 1984. Allelopathy. Academic Press, Orlando. 422.

Solymosi, P. 1994. Crude plant extracts as weed biocontrol agents. Acta Phytopathologica et Entomologica Hungarica 29(3-4). 361–370.

Solymosi, P. és Gimesi, A. 1993. Gyomirtó hatású növényi kivonatok előállításának és alkalmazásának módszertana. Növényvédelem 29(8). 377–380.

Swanton, C. J. and Murphy, S. D. 1996. Weed science beyond the weeds: The role of integrated weed management (IWM) in agroecosystem health. Weed Sci. 44. 437–445. https://doi.org/10.1017/S0043174500094145

Szabó, L. Gy. 1994. Fitokémiai analógiák ökológiai vonatkozásai. Gyógyszerészet. 38. 567–571.

Szilágyi, A., Radócz, L. and Tóth, T. 2018. Allelopathic effect of invasive plants (Eriochloa villosa, Asclepias syriaca, Fallopia X bohemica, Solidago gigantea) on seed germination. Agrártud. Közl. 74. 179–182. https://doi.org/10.34101/actaagrar/74/1686

Theophrastus. Kr. e. 300. Equiry into plants and minor works on odours and weather signs. 2 vols. transl. to English by Hort A. Heineman W., London. 82

Letöltések

Megjelent

2020-03-06

Folyóirat szám

Rovat

Cikkek