3D nyomtatás a mezőgazdaságban - áttekintés

Szerzők

  • Schné Tamás Pannon Egyetem Nagykanizsa, Körforgásos Gazdaság Egyetemi Központ, Alkalmazott Informatikai Tanszék, e-mail: schne.tamas@pen.uni-pannon.hu
  • Jaskó Szilárd Pannon Egyetem Nagykanizsa, Körforgásos Gazdaság Egyetemi Központ, Alkalmazott Informatikai Tanszék, e-mail: jasko.szilard@pen.uni-pannon.hu (levelező szerző) https://orcid.org/0000-0001-9142-4690

Kulcsszavak:

3D nyomtatás, mezőgazdaság, élelmiszer feldolgozás

Absztrakt

A 3D nyomtatást - hivatalos nevén additív gyártás - számos különböző alkalmazásban használják már sikeresen a világon. Ez a cikk a 3D nyomtatás mezőgazdasági, élelmiszer-feldolgozási és felügyeleti felhasználási eseteinek áttekintését mutatja be. A munka bemutatja a mezőgazdasági termelésben használt különböző eszközöket és berendezéseket, valamint olyan érzékelőket, amelyeket ennek a technológiának a segítségével lettek hatékonyabbak/olcsóbbak/jobbak. Bár számos nyomtatási alapanyagot ismerünk a műanyagtól a fémig, mégis a PLA és az ABS hőre lágyuló műanyagok a legelterjedtebbek, mivel a többihez képest olcsóak és könnyen nyomtathatóak. Az alapanyagok közül érdekes terület a mezőgazdasági hulladékok, melyekre kiváló például a dió- és rákhéjak felhasználása. Egy másik fontos alkalmazás az élelmiszerek közvetlen extrudálása, amely segítséget tudnak nyújtani a nyelési nehézségekkel küzdő embereknek, hogy könnyebben és jobb minőségben tudjanak táplálkozni. További előnye ennek az eljárásnak, hogy speciális étrendek alakíthatóak ki, amely testre szabható és változatos étrendet eredményez. A 3D nyomtatás alkalmazási területei várhatóan bővülni fognak és egyre újabb és újabb területek fog megjelenni.

Hivatkozások

Dponics. 2023. 3d printing + hydroponics. Retrieved October 10, 2023, from https://www.3dponics.com/

Jan Lloyd B. Crisostomo1, John Ryan C. Dizon. 2021. 3D Printing Applications in Agriculture, Food Processing, and Environmental Protection and Monitoring. Advance Sustainable Science, Engineering and Technology (ASSET). 3 (2) 0210201-01–0210201-10. https://doi.org/10.26877/asset.v3i2.9627

Advincula, R. C., Dizon, J. R. C., Chen, Q., Niu, I., Chung, J., Kilpatrick, L., & Newman, R. 2020. Additive manufacturing for covid-19: Devices, materials, prospects, and challenges. MRS Communications. 10 413–427. https://doi.org/10.1557/mrc.2020.57

Al-Dulimi, Z., Wallis, M., Tan, D. K., Maniruzzaman, M., & Nokhodchi, A. 2021. 3D printing technology as innovative solutions for biomedical applications. Drug Discovery Today. 26 (2) 360–383. https://doi.org/10.1016/j.drudis.2020.11.013

Carolo, L., & Haines, J. 2020. All3dp: 3d printed house: 20 most important projects. Retrieved June 26, 2023, from https://all3dp.com/2/3d-printed-house-3d-printed-building/

Company, S. P. (2017). What materials are used for 3d printing? Retrieved October 3, 2023, from https://www.sharrettsplating.com/blog/materials-used-3dprinting/

Derossi, A., Caporizzi, R., Azzollini, D., & Severini, C. 2018. Application of 3d printing for customized food. a case on the development of a fruit-based snack for children. Journal of Food Engineering. 220 65–75. https://doi.org/10.1016/j.jfoodeng.2017.05.015

Diego, J. R. R., Martinez, D. W. C., Robles, G. S., & Dizon, J. R. C. 2021. Development of smartphone-controlled hand and arm exoskeleton for persons with one-arm disability (schax). Open Engineering. 11 (1) 161–170. https://doi.org/10.1515/eng-2021-0016

Dizon, J. R. C., Gache, C. C. L., Cascolan, H. M. S., Cancino, L. T., & Advincula, R. C. 2021. Post-processing of 3d-printed polymers. Technologies. 9 (3) 61. https://doi.org/10.3390/technologies9030061

Dizon, J. R. C., Valino, A. D., Souza, L. R., Espera, A. H., Chen, Q., & Advincula, R. C. 2019. 3d-printed molds and materials for injection molding and rapid tooling applications. MRS Communications Prospectives Journal. 9 1267–1283. https://doi.org/10.1557/mrc.2019.147

Dizon, J. R. C., Espera Jr, A. H., Chen, Q., & Advincula, R. C. 2018. Mechanical characterization of 3d-printed polymers. Additive manufacturing. 20 44–67. https://doi.org/10.1016/j.addma.2017.12.002

Dizon, J. R. C., Valino, A. D., Souza, L. R., H, E. A., Chen, Q., & Advincula, R. C. 2020. 3d printed injection molds using various 3d printing technologies. Materials Science Forum. 1005, 150–156. https://doi.org/10.4028/www.scientific.net/MSF.1005.150

Dong, Y., Fan, S. Q., Shen, Y., Yang, J. X., Yan, P., Chen, Y. P., Li, J., Guo, J. S., Duan, X. M., Fang, F., & Liu, s. Y. 2015. A novel bio-carrier fabricated using 3d printing technique for wastewater treatment. Scientific Reports. 5 12400. https://doi.org/10.1038/srep12400

Espera, A. H., Dizon, J. R. C., Chen, Q., & Advincula, R. C. 2019. 3d-printing and advanced manufacturing for electronics. Progress in Additive Manufacturing. 4 245–267. https://doi.org/10.1007/s40964-019-00077-7

Garuda3D. 2023. 3d printing in agriculture. Retrieved October 10, 2023, from https://garuda3d.com/3d-printing-in-agriculture

Halterman, T. E. 2023. 3d printing helpds test crop seeding system. Retrieved October 10, 2023, from https://3dprint.com/48469/3d-printing-groundbreaking/

i.materialise. 2021. Metals 3d printing. Retrieved October 3, 2023, from https://i.materialise.com/en/3d-printing-materials/metals#preciousMetals

Liu, C., Ho, C., & Wang, J. 2018. The development of 3d food printer for printing fibrous meat materials. IOP Conference Series: Materials Science and Engineering. 284 012019. https://doi.org/10.1088/1757-899X/284/1/012019

Liu, Z., Bhandari, B., Prakash, S., & Zhang, M. 2018. Creation of internal structure of mashed potato construct by 3d printing and its textural properties. Food Research International. 111 534–543. https://doi.org/10.1016/j.foodres.2018.05.075

Liu, Z., Zhang, M., Bhandari, B., & Wang, Y. (2017). 3d printing: Printing precision and application in food sector. Trends in Food Science & Technology. 69 83–94. https://doi.org/10.1016/j.tifs.2017.08.018

Markforged. 2021. Pla vs abs vs nylon. Retrieved October 3, 2023, from https://markforged.com/resources/blog/pla-abs-nylon

Martín de Vidales, M. J., Nieto-Márquez, A., Morcuende, D., Atanes, E., Blaya, F., Soriano, E., & Fernández-Martínez, F. 2019. 3d printed floating photocatalysts for wastewater treatment. Catalysis Today. 328 157–163. https://doi.org/10.1016/j.cattod.2019.01.074

Mohammed, J. 2016. Applications of 3d printing technologies in oceanography. Methods in Oceanography. 17 97–117. https://doi.org/10.1016/j.mio.2016.08.001

Mohammed, M. I., Wilson, D., Gomez-Kervin, E., Rosson, L., & Long, J. 2019. Ecoprinting: Investigation of solar powered plastic recycling and additive manufacturing for enhanced waste management and sustainable manufacturing. 2018 IEEE Conference on Technologies for Sustainability, SusTech, 1–6. https://doi.org/10.1109/SusTech.2018.8671370

Natives, 3. 2019. The 12 initiatives that combine 3d printing and sustainability. Retrieved October 3, 2023, from https://www.3dnatives.com/en/3d-printing-sustainability-220420194/

Pant, A., Lee, A. Y., Karyappa, R., Lee, C. P., An, J., Hashimoto, M., Tan, U.- X., Wong, G., Chua, C. K., & Zhang, Y. 2021. 3d food printing of fresh vegetables using food hydrocolloids for dysphagic patients. Food Hydrocolloids. 114 106546. https://doi.org/10.1016/j.foodhyd.2020.106546

Pearce, J. M. 2015. Applications of open source 3-d printing on small farms. Organic Farming. 1 19–35. https://doi.org/10.12924/of2015.01010019

Peels, J. 2017. 3d print: 3d printing in the military. Retrieved February 23, 2017, from https://3dprint.com/165561/3d-printing-in-the-military/

Podchasov, E. O. 2021a. Design and technological features of 3d-printing usage in agricultural machines gearings repair. International Journal of Mechanical Engineering and Robotics Research. 10 32–37. https://doi.org/10.18178/ijmerr.10.1.32-37

Podchasov, E. O. 2021b. Design and technological features of 3d-printing. work, 5, 9.

ProximityDesigns. 2023. Retrieved October 10, 2023, from https://proximitydesigns.org/service/farm-tech/

P.s, A. 2022. The top applications in food 3d printing. Retrieved October 3, 2023, from https://www.3dnatives.com/en/food-3d-printing220520184/

Salamone, F., Belussi, L., Danza, L., Ghellere, M., & Meroni, I. 2015. Design and development of nemos, an all-in-one, low-cost, web-connected and 3d-printed device for environmental analysis. Sensors. 15 (6), 13012–13027. https://doi.org/10.3390/s150613012

Shepherd, J., & McKay, R. 2021. Alternative possibilities on some issues of mass transportation systems. International Journal of Science and Technology. 11 558–563.

Tijing, L. D., Dizon, J. R. C., & Cruz, G. G. 2021. 3d-printed absorbers for solar-driven interfacial water evaporation: A mini-review. Advance Sustainable Science, Engineering, and Technology. 3 (1) 0210103-1–0210103-9. https://doi.org/10.26877/asset.v3i1.8367

Tijing, L. D., Dizon, J. R. C., Ibrahim, I., Nisay, A. R. N., Shon, H. K., & Advincula, R. C. 2020. 3d printing for membrane separation, desalination and water treatment. Applied Materials Today. 18 100486. https://doi.org/10.1016/j.apmt.2019.100486

Valino, A. D., Dizon, J. R. C., Espera, A. H., Chen, Q., Messman, J., & Advincula, R. C. 2019. Advances in 3d printing of thermoplastic polymer composites and nanocomposites. Progress in Polymer Science. 98 101162. https://doi.org/10.1016/j.progpolymsci.2019.101162

Wolf, M. 2019. 3d food printing startup beehex debuts a cake decorating robot. Retrieved October 3, 2023, from https://thespoon.tech/beehex-ships-hi-volume-cookie-cakedecorating-robot/

Wong, J. Y. 2016. 3d printing applications for space missions. Aerospace Medicine and Human Performance. 87 580–582. https://doi.org/10.3357/AMHP.4633.2016

Yu, I. K. M., & Wong, K. -H. 2023. Food waste-derived 3d printable materials: A carbon neutral solution to global foodloss. Trends in Food Science and Technology. 137 156–166. https://doi.org/10.1016/j.tifs.2023.05.014

Letöltések

Megjelent

2023-12-29

Folyóirat szám

Rovat

Cikkek