3D nyomtatás a mezőgazdaságban - áttekintés
Kulcsszavak:
3D nyomtatás, mezőgazdaság, élelmiszer feldolgozásAbsztrakt
A 3D nyomtatást - hivatalos nevén additív gyártás - számos különböző alkalmazásban használják már sikeresen a világon. Ez a cikk a 3D nyomtatás mezőgazdasági, élelmiszer-feldolgozási és felügyeleti felhasználási eseteinek áttekintését mutatja be. A munka bemutatja a mezőgazdasági termelésben használt különböző eszközöket és berendezéseket, valamint olyan érzékelőket, amelyeket ennek a technológiának a segítségével lettek hatékonyabbak/olcsóbbak/jobbak. Bár számos nyomtatási alapanyagot ismerünk a műanyagtól a fémig, mégis a PLA és az ABS hőre lágyuló műanyagok a legelterjedtebbek, mivel a többihez képest olcsóak és könnyen nyomtathatóak. Az alapanyagok közül érdekes terület a mezőgazdasági hulladékok, melyekre kiváló például a dió- és rákhéjak felhasználása. Egy másik fontos alkalmazás az élelmiszerek közvetlen extrudálása, amely segítséget tudnak nyújtani a nyelési nehézségekkel küzdő embereknek, hogy könnyebben és jobb minőségben tudjanak táplálkozni. További előnye ennek az eljárásnak, hogy speciális étrendek alakíthatóak ki, amely testre szabható és változatos étrendet eredményez. A 3D nyomtatás alkalmazási területei várhatóan bővülni fognak és egyre újabb és újabb területek fog megjelenni.
Hivatkozások
Dponics. 2023. 3d printing + hydroponics. Retrieved October 10, 2023, from https://www.3dponics.com/
Jan Lloyd B. Crisostomo1, John Ryan C. Dizon. 2021. 3D Printing Applications in Agriculture, Food Processing, and Environmental Protection and Monitoring. Advance Sustainable Science, Engineering and Technology (ASSET). 3 (2) 0210201-01–0210201-10. https://doi.org/10.26877/asset.v3i2.9627
Advincula, R. C., Dizon, J. R. C., Chen, Q., Niu, I., Chung, J., Kilpatrick, L., & Newman, R. 2020. Additive manufacturing for covid-19: Devices, materials, prospects, and challenges. MRS Communications. 10 413–427. https://doi.org/10.1557/mrc.2020.57
Al-Dulimi, Z., Wallis, M., Tan, D. K., Maniruzzaman, M., & Nokhodchi, A. 2021. 3D printing technology as innovative solutions for biomedical applications. Drug Discovery Today. 26 (2) 360–383. https://doi.org/10.1016/j.drudis.2020.11.013
Carolo, L., & Haines, J. 2020. All3dp: 3d printed house: 20 most important projects. Retrieved June 26, 2023, from https://all3dp.com/2/3d-printed-house-3d-printed-building/
Company, S. P. (2017). What materials are used for 3d printing? Retrieved October 3, 2023, from https://www.sharrettsplating.com/blog/materials-used-3dprinting/
Derossi, A., Caporizzi, R., Azzollini, D., & Severini, C. 2018. Application of 3d printing for customized food. a case on the development of a fruit-based snack for children. Journal of Food Engineering. 220 65–75. https://doi.org/10.1016/j.jfoodeng.2017.05.015
Diego, J. R. R., Martinez, D. W. C., Robles, G. S., & Dizon, J. R. C. 2021. Development of smartphone-controlled hand and arm exoskeleton for persons with one-arm disability (schax). Open Engineering. 11 (1) 161–170. https://doi.org/10.1515/eng-2021-0016
Dizon, J. R. C., Gache, C. C. L., Cascolan, H. M. S., Cancino, L. T., & Advincula, R. C. 2021. Post-processing of 3d-printed polymers. Technologies. 9 (3) 61. https://doi.org/10.3390/technologies9030061
Dizon, J. R. C., Valino, A. D., Souza, L. R., Espera, A. H., Chen, Q., & Advincula, R. C. 2019. 3d-printed molds and materials for injection molding and rapid tooling applications. MRS Communications Prospectives Journal. 9 1267–1283. https://doi.org/10.1557/mrc.2019.147
Dizon, J. R. C., Espera Jr, A. H., Chen, Q., & Advincula, R. C. 2018. Mechanical characterization of 3d-printed polymers. Additive manufacturing. 20 44–67. https://doi.org/10.1016/j.addma.2017.12.002
Dizon, J. R. C., Valino, A. D., Souza, L. R., H, E. A., Chen, Q., & Advincula, R. C. 2020. 3d printed injection molds using various 3d printing technologies. Materials Science Forum. 1005, 150–156. https://doi.org/10.4028/www.scientific.net/MSF.1005.150
Dong, Y., Fan, S. Q., Shen, Y., Yang, J. X., Yan, P., Chen, Y. P., Li, J., Guo, J. S., Duan, X. M., Fang, F., & Liu, s. Y. 2015. A novel bio-carrier fabricated using 3d printing technique for wastewater treatment. Scientific Reports. 5 12400. https://doi.org/10.1038/srep12400
Espera, A. H., Dizon, J. R. C., Chen, Q., & Advincula, R. C. 2019. 3d-printing and advanced manufacturing for electronics. Progress in Additive Manufacturing. 4 245–267. https://doi.org/10.1007/s40964-019-00077-7
Garuda3D. 2023. 3d printing in agriculture. Retrieved October 10, 2023, from https://garuda3d.com/3d-printing-in-agriculture
Halterman, T. E. 2023. 3d printing helpds test crop seeding system. Retrieved October 10, 2023, from https://3dprint.com/48469/3d-printing-groundbreaking/
i.materialise. 2021. Metals 3d printing. Retrieved October 3, 2023, from https://i.materialise.com/en/3d-printing-materials/metals#preciousMetals
Liu, C., Ho, C., & Wang, J. 2018. The development of 3d food printer for printing fibrous meat materials. IOP Conference Series: Materials Science and Engineering. 284 012019. https://doi.org/10.1088/1757-899X/284/1/012019
Liu, Z., Bhandari, B., Prakash, S., & Zhang, M. 2018. Creation of internal structure of mashed potato construct by 3d printing and its textural properties. Food Research International. 111 534–543. https://doi.org/10.1016/j.foodres.2018.05.075
Liu, Z., Zhang, M., Bhandari, B., & Wang, Y. (2017). 3d printing: Printing precision and application in food sector. Trends in Food Science & Technology. 69 83–94. https://doi.org/10.1016/j.tifs.2017.08.018
Markforged. 2021. Pla vs abs vs nylon. Retrieved October 3, 2023, from https://markforged.com/resources/blog/pla-abs-nylon
Martín de Vidales, M. J., Nieto-Márquez, A., Morcuende, D., Atanes, E., Blaya, F., Soriano, E., & Fernández-Martínez, F. 2019. 3d printed floating photocatalysts for wastewater treatment. Catalysis Today. 328 157–163. https://doi.org/10.1016/j.cattod.2019.01.074
Mohammed, J. 2016. Applications of 3d printing technologies in oceanography. Methods in Oceanography. 17 97–117. https://doi.org/10.1016/j.mio.2016.08.001
Mohammed, M. I., Wilson, D., Gomez-Kervin, E., Rosson, L., & Long, J. 2019. Ecoprinting: Investigation of solar powered plastic recycling and additive manufacturing for enhanced waste management and sustainable manufacturing. 2018 IEEE Conference on Technologies for Sustainability, SusTech, 1–6. https://doi.org/10.1109/SusTech.2018.8671370
Natives, 3. 2019. The 12 initiatives that combine 3d printing and sustainability. Retrieved October 3, 2023, from https://www.3dnatives.com/en/3d-printing-sustainability-220420194/
Pant, A., Lee, A. Y., Karyappa, R., Lee, C. P., An, J., Hashimoto, M., Tan, U.- X., Wong, G., Chua, C. K., & Zhang, Y. 2021. 3d food printing of fresh vegetables using food hydrocolloids for dysphagic patients. Food Hydrocolloids. 114 106546. https://doi.org/10.1016/j.foodhyd.2020.106546
Pearce, J. M. 2015. Applications of open source 3-d printing on small farms. Organic Farming. 1 19–35. https://doi.org/10.12924/of2015.01010019
Peels, J. 2017. 3d print: 3d printing in the military. Retrieved February 23, 2017, from https://3dprint.com/165561/3d-printing-in-the-military/
Podchasov, E. O. 2021a. Design and technological features of 3d-printing usage in agricultural machines gearings repair. International Journal of Mechanical Engineering and Robotics Research. 10 32–37. https://doi.org/10.18178/ijmerr.10.1.32-37
Podchasov, E. O. 2021b. Design and technological features of 3d-printing. work, 5, 9.
ProximityDesigns. 2023. Retrieved October 10, 2023, from https://proximitydesigns.org/service/farm-tech/
P.s, A. 2022. The top applications in food 3d printing. Retrieved October 3, 2023, from https://www.3dnatives.com/en/food-3d-printing220520184/
Salamone, F., Belussi, L., Danza, L., Ghellere, M., & Meroni, I. 2015. Design and development of nemos, an all-in-one, low-cost, web-connected and 3d-printed device for environmental analysis. Sensors. 15 (6), 13012–13027. https://doi.org/10.3390/s150613012
Shepherd, J., & McKay, R. 2021. Alternative possibilities on some issues of mass transportation systems. International Journal of Science and Technology. 11 558–563.
Tijing, L. D., Dizon, J. R. C., & Cruz, G. G. 2021. 3d-printed absorbers for solar-driven interfacial water evaporation: A mini-review. Advance Sustainable Science, Engineering, and Technology. 3 (1) 0210103-1–0210103-9. https://doi.org/10.26877/asset.v3i1.8367
Tijing, L. D., Dizon, J. R. C., Ibrahim, I., Nisay, A. R. N., Shon, H. K., & Advincula, R. C. 2020. 3d printing for membrane separation, desalination and water treatment. Applied Materials Today. 18 100486. https://doi.org/10.1016/j.apmt.2019.100486
Valino, A. D., Dizon, J. R. C., Espera, A. H., Chen, Q., Messman, J., & Advincula, R. C. 2019. Advances in 3d printing of thermoplastic polymer composites and nanocomposites. Progress in Polymer Science. 98 101162. https://doi.org/10.1016/j.progpolymsci.2019.101162
Wolf, M. 2019. 3d food printing startup beehex debuts a cake decorating robot. Retrieved October 3, 2023, from https://thespoon.tech/beehex-ships-hi-volume-cookie-cakedecorating-robot/
Wong, J. Y. 2016. 3d printing applications for space missions. Aerospace Medicine and Human Performance. 87 580–582. https://doi.org/10.3357/AMHP.4633.2016
Yu, I. K. M., & Wong, K. -H. 2023. Food waste-derived 3d printable materials: A carbon neutral solution to global foodloss. Trends in Food Science and Technology. 137 156–166. https://doi.org/10.1016/j.tifs.2023.05.014
Letöltések
Megjelent
Folyóirat szám
Rovat
License
Copyright (c) 2023 Schné Tamás, Jaskó Szilárd
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The articel is under the Creative Commons 4.0 standard licenc: CC-BY-NC-ND-4.0. Under the following terms: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material. You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.