A műtrágyák szerves trágyával történő helyettesíthetőségének vizsgálata környezetvédelmi aspektusból az előállításuk alapján

Szerzők

  • Kiss Nikolett Éva Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Víz- és Környezetgazdálkodási Intézet, e-mail: kiss.nikolett@agr.unideb.hu (levelező szerző) https://orcid.org/0000-0003-1010-974X
  • Tamás János Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Víz- és Környezetgazdálkodási Intézet, e-mail: tamas@agr.unideb.hu https://orcid.org/0000-0002-9893-6725
  • Nagy Attila Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Víz- és Környezetgazdálkodási Intézet, e-mail: attilanagy@agr.unideb.hu https://orcid.org/0000-0003-1220-8231

Kulcsszavak:

életciklus-értékelés, környezeti hatás, komposztált és pelletált baromfi alom (CPPL), műtrágyák

Absztrakt

Jelen kutatás során a komposztált és pelletált baromfi alom (composted and pelletized poultry litter, CPPL) előállítása alatt fellépő környezeti hatások mérése és értékelése volt a cél, összehasonlítva a különböző műtrágyák gyártása során fellépő környezeti hatásokkal. Az összehasonlítás eredményeként eldönthetjük, hogy a CPPL alkalmas alternatíva-e a műtrágyák helyettesítésére. A környezeti hatások mérése és értékelése életciklus-értékelés módszertanával történt, az ISO14040:2006 szabványsorozatnak megfelelően. Négy hatáskategória lett az értékelésbe vonva, ezek voltak a savasodási potenciál (AP), eutrofizációs potenciál (EP), globális felmelegedési potenciál (GWP) és humán toxicitási potenciál (HTP).

Az eredmények alapján elmondható, hogy bár a szerves anyag komposztálása során fellépő gázemissziónak köszönhetően a savasodási potenciál és az eutrofizációs potenciál magasabb volt a CPPL gyártásánál, viszont a globális felmelegedési potenciál és humán toxicitási potenciál esetében hasonló vagy alacsonyabb értékek voltak tapasztalhatók összehasonlítva a műtrágyákkal.

A szerves trágyák előnyben részesítése a műtrágyákkal szemben napjainkban megfontolandó, részben azért, mert a műtrágya-használat csökkentésére irányuló törekvések összhangban állnak az Európai Zöld Megállapodás és a Zöldítés célkitűzéseivel, részben pedig a napjainkban zajló események, a műtrágya-hiány és a műtrágya árának drágulása miatt. Tehát a szerves trágyák mind környezetvédelmi, mind gazdasági szempontból alkalmas alternatívák lehetnek a műtrágyák helyettesítésére.

Hivatkozások

Adediran, J. A., Taiwa, L. B., Akande, M. O., Sobulo, R. A., Idown, O. J. 2005. Application of Organic and Inorganic Fertilizer for Sustainable Maize and Cowpea Yield in Nigeria. Journal of Plant Nutrition 27(7). 1163–1181. https://doi.org/10.1081/PLN-120038542

Alimi, T., Ajewole, O. C., Awosola, O., Idowu, E. O. 2007. Organic and Inorganic Fertilizer for Vegetable Production under Tropical Conditions. Journal of Agriculture & Rural Development 1. 120–136.

Asselin-Balençon, A., Broekema, R., Teulon, H., Gastaldi, G., Houssier, J., Moutia, A., Rousseau, V., Wermeille, A., Colomb, V. 2020. AGRIBALYSE v3.0: the French agricultural and food LCI database. Methodology for the food products.

Bíró, T., Tamás, J., Thyll, S. 1998. Risk assessment of nitrate pollution in lower watershed of the Berettyó River. In: Filep, Gy. (ed.) Soil Water Environment Relationships. 239–247.

Wageningen–Debrecen; Wageningen University and Research, Wageningen, Netherland; University of Debrecen, Debrecen, Hungary.

Chen, J.-H., Wu, J.-T., Young, C. 2007. The combined use of chemical and organic fertilizers and/or biofertilizer for crop growth and soil fertility. Environmental Science & Technology 10. 1–12. https://doi.org/10.30058/SE.200706.0001

Chia, S. Y., Tanga, C. M., van Loon, J. J., Dicke, M. 2019. Insects for sustainable animal feed: Inclusive business models involving smallholder farmers. Current Opinion in Environmental Sustainability 41. 23–30. https://doi.org/10.1016/j.cosust.2019.09.003

Colomb, V., Amar, S. A., Mens, C. B., Gac, A., Gaillard, G., Koch, P., Mousset, J., Salou, T., Tailleur, A., van der Werf, H. M. G. 2015. AGRIBALYSE®, the French LCI Database for agricultural products: high quality data for producers and environmental labelling. Oilseeds and fats, Crops and Lipids 22(1). D104. https://doi.org/10.1051/ocl/20140047

Csiba, A., Fenyvesi, L. 2012. Facilities of poultry manure processing and utilization with environmental technologies. AgEng Konferencia Valencia.

Enahoro, D., Lannerstad, M., Pfeifer, C., Dominguez-Salas, P. 2018. Contributions of livestock-derived foods to nutrient supply under changing demand in low- and middle-income countries. Glob. Food Secur 19. 1–10.

Gaál K. 2011. Trágyakezelés- és hasznosítása a baromfitelepeken. In: Bogenfürst F., Horn P., Sütő Z., Kovácsné Gaál K., Kovács G. 2011. Baromfitartás. Egyetemi jegyzet, Kaposvári Egyetem; Pannon Egyetem; Nyugat-Magyarországi Egyetem.

Gabathuler, H. 2006. The CML Story: How Environmental Sciences Entered the Debate on LCA. The International Journal of Life Cycle Assessment 11. 127–132. https://doi.org/10.1065/lca2006.04.021

García, A., Fox, J.G., Besser T.E. 2010. Zoonotic enterohemorrhagic Eschericia coli: A one health perspective. ILAR Journal 51(3). 221–232. https://doi.org/10.1093/ilar.51.3.221

Georgakakis, D., Krintas, TH. 2000. Optimal use of the Hosoya system composting poultry manure. Bioresource Technology 72(3). 227–233. https://doi.org/10.1016/S0960-8524(99)00122-4

Gorliczay, E., Boczonádi, I., Kiss, N. É., Tóth, F. A., Pabar, S. A., Bíró, B., Kovács, L. R., Tamás, J. 2021. Microbiological Effectivity Evaluation of New Poultry Farming Organic Waste Recycling. Agriculture 11(7). 683. https://doi.org/10.3390/agriculture11070683

Guinée, J. B., Gorree, M., Heijungs, R., Huppes, G., Renekleijn – de Koning, A., van Oers, L., Sleeswijk, A. W., Suh, S., udo de Haes, H. A., de Bruijn, H., van Duin, R., Huijbregts, M. A. J., Lindeijer, E., Roorda, A. A. H., van der Ven, B. L., Weidema, B. P. 2002. Handbook on Life Cycle Assessment - Operational Guide to the ISO Standards. Kluwer Academic Publisher, New York, Boston, Dordrecht, London, Moscow.

Han, S. H., Young, J., Hwang, J., Kima, S. B., Parka, B. 2016. The Effects of Organic Manure and Chemical Fertilizer on the Growth and Nutrient Concentrations of Yellow Poplar (Liriodendron tulipifera Lin.) in a Nursery System. Forest Science and Technology 12. 137–143. https://doi.org/10.1080/21580103.2015.1135827

He, Z. 2020. Organic Animal Farming and Comparative Studies of Conventional and Organic Manures. In Waldrip, H.M., Pagliari, P.H., He, Z. (eds.) Animal Manure: Production, Characteristics, Environmental Concerns, and Management. American Society of Agronomy: Madison, WI, USA. 67. 165–182. https://doi.org/10.2134/asaspecpub67.c9

He, Z., Pagliari, P.H., Waldrip, H.M. 2016. Applied and Environmental Chemistry of Animal Manure: A Review. Pedosphere 26(6). 779–816. https://doi.org/10.1016/S1002-0160(15)60087-X

Heredia, N., García, S. 2018. Animals as sources of food-borne pathogens: A review. Animal Nutrition 4(3). 250–255. https://doi.org/10.1016/j.aninu.2018.04.006

https://2015-2019.kormany.hu/download/5/06/01000/5_zold_gazdalk_kezikonyv.pdf

https://www.nak.hu/kiadvanyok/kiadvanyok/2285-zoldites-a-gyakorlatban-gazdalkodoisegedlet/file

IPCC, 2005. Odour Management at Intensive Livestock Installations. Environment Agency.

Janković, L.J., Petrujkić, B., Aleksić, N., Vučinić, M., Teodorović, R., Karabasil, N., Relić, R., Drašković, V., Nenadović, K. 2020. Carcass characteristics and meat quality of broilers fed on earthworm (Lumbricus rubellus) meal. Journal of the Hellenic Veterinary Medical Society 71(1). 2031–2040. https://doi.org/10.12681/jhvms.22953

Kasule, L., Katongole, C., Nambi-Kasozi, J., Lumu, R., Bareeba, F., Presto, M., Ivarsson, E., Lindberg, J. E. 2014. Low nutritive quality of own-mixed chicken rations in Kampala City, Uganda. Agronomy for Sustainable Development 34. 921–926. https://doi.org/10.1007/s13593-013-0205-2

Kátai, J. 2011. Alkalmazott talajtan. Egyetemi jegyzet. Debreceni Egyetem, Debrecen.

Koch, P., Salou, T. 2020. AGRIBALYSE®: Methodology, Agricultural stage – Version 3.0.

Ed ADAME, Angers, France. Luske, B. 2010. Reduced GHG Emissions due to Compost Production and Compost Use in Egypt. Comparing Two Scenarios; 2010-016 LbD; Louis Bolk Instituut, Bunnik, The Netherlands.

Magnusson, U. 2016. Sustainable Global Livestock Development for Food Security and Nutrition Including Roles for Sweden; Ministry of Enterprise and Innovation: Stockholm, Sweden; Swedish FAO Committee: Stockholm, Sweden, 2016.

Mézes, L., Nagy, A., Gálya, B., Tamás, J. 2015. Poultry feather wastes recycling possibility as soil nutrient. Eurasian Journal of Soil Science 4. 244–252. http://dx.doi.org/10.18393/ejss.2015.4.244-252

Modderman, C. 2020. Composting with or without additives. In Waldrip, H.M., Pagliari, P.H., He, Z. (eds.) Animal Manure: Production, Characteristics, Environmental Concerns, and Management – American Society of Agronomy: Madison, WI, USA. 67. 245–254.

Moyo, S., Swanepoel, F.J.C. 2010. Multifunctionality of livestock in developing communities. In Swanepoel, F.J.C., Stroebel, A., Moyo, S. (eds.) The Role of Livestock in Developing Communities: Enhancing Multifunctionality. University of Free State (UFS) and the technical Centre for Agricultural and Rural Cooperation (CTA). Cape Town, South Africa; Wageningen, The Netherlands. 1–11.

Muralikrishna, I.V., Manickam, V. 2017. Life Cycle Assessment. In: Muralikrishna, I.V., Manickam, V. (Eds.) Environmental management: Science and Engineering for Industry. Butterworth-Heinemann kiadó, Oxford, Egyesült Királyság. https://doi.org/10.1016/B978-0-12-811989-1.00005-1

NAK (2017): Zöldítés. Gazdálkodói kézikönyv.

NAK (2018): Zöldítés a gyakorlatban. Gazdálkodói segédlet.

Nalunga, A., Komakech, A.J., Jjagwe, J., Magala, H., Lederer, J. 2021. Growth characteristics and meat quality of broiler chickens fed earthworm meal from Eudrilus eugeniae as a protein source. Livestock Science 245. 104394. https://doi.org/10.1016/j.livsci.2021.104394

Rosenbaum, R.K., Bachman, T.M., Gold, L.S. 2008. USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. International Journal of Life Cycle Assessment. 13. 533.

Scholl, L., Nieuwenhuis, R. 2004. Soil Fertility Management; Agromisa Foundation: Wageningen, The Netherlands. 48–55.

Szabó L. 2016. Hosoya trágyakezelési technológia. Gödöllő

Szabó, A., Tamás, J., Nagy, A. 2019. Spectral evaluation of the effect of poultry manure pellets on pigment content of maize (Zea mays L.) and wheat (Triticum aestivum L.) seedlings. Natural Resources and Sustainable Development 9(1). 70–79. https://doi.org/10.31924/nrsd.v9i1.025

Tóthné, SZ. K. 2008. Életciklus-elemzés, életciklus hatásértékelés.

Zhu, Z., Dong, H., Xi, J., Xin, H. 2014. Ammonia and greenhouse gas emissions from cocomposting of dead hens with manure as affected by forced aeration rate. Trans. ASABE American Society of Agricultural and Biological Engineering. 57. 211–217.

Internetes források:

Internet1: https://eur-lex.europa.eu/resource.html?uri=cellar:b828d165-1c22-11ea-8c1f-01aa75ed71a1.0012.02/DOC_1&format=PDF

Internet2: http://www.khosoya.co.jp/en/file/pdf/Hosoy%20Poultry%20Manure%20Fermentation%20System%20ver200602.pdf

Internet3: http://www.k-hosoya.co.jp/en/product/ HOSOYA & CO (1996). Hosoya Manure Fermentation System. Hoyosa & Co., 412 Fukaya, Ayase-Shi, Kanagawa-ken 252, Japan.

Internet4: www.openlca.org

Letöltések

Megjelent

2022-12-15