Baromfitrágya alapú komposzt szuszpenzió hatásának vizsgálata káposzta (Brassica oleracea L. convar. capitata provar. capitata Dutch) tesztnövénnyel

Szerzők

  • Gorliczay Edit Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Víz- és Környezetgazdálkodási Intézet, e-mail: edit.gorliczay@agr.unideb.hu (levelező szerző) https://orcid.org/0000-0001-9691-6280
  • Kiss Nikolett Éva Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Víz- és Környezetgazdálkodási Intézet, e-mail: kiss.nikolett@agr.unideb.hu https://orcid.org/0000-0003-1010-974X
  • Nagy Attila Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Víz- és Környezetgazdálkodási Intézet, e-mail: attilanagy@agr.unideb.hu https://orcid.org/0000-0003-1220-8231
  • Tamás János Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Víz- és Környezetgazdálkodási Intézet, e-mail: tamas@agr.unideb.hu https://orcid.org/0000-0002-9893-6725

Kulcsszavak:

baromfitrágya, komposzt szuszpenzió, káposzta, tenyészedényes kísérlet

Absztrakt

A komposzt szuszpenziók a komposztált anyagok vizes kivonatai, amelyeket a növényi betegségek elleni védekezésre és tápanyagutánpótlásra használnak. Jelen tanulmányban egy brojler- és tyúktrágya alapú komposzt szuszpenzió, mint tápanyag-utánpótlásra alkalmas folyékony termék hatását vizsgáltuk két talajtípuson (homoktalaj, humuszos homoktalaj), káposzta (Brassica oleracea L. convar. capitata provar. capitata Dutch) tesztnövénnyel, egy vízkapacitási szinten (VKsz 70%), négy- és nyolchetes betakarítási idővel. Vizsgáltuk a levélszám (db), nedves tömeg (g), teljes hajtáshossz (cm), Fv/Fm, Fv/Fo, összes klorofill- (μg/g) és az összes karotinoid-tartalom (μg/g) alakulását. A tenyészedényes kísérletek eredményei alapján elmondható, hogy a kontroll és a komposzt szuszpenziókkal kezelt növények vizsgált paraméterei, valamint a felszámolási idők között szignifikáns különbségek voltak kimutathatók (p<0,05). A kezelések hatására nagyobb levélszámot kaptunk, és ez az erőteljes lombnövekedés valószínűsíthetően a nitrogéntúladagolás hatása. A növényeket érő stressz meghatározásához az Fv/Fm, valamint az Fv/Fo értékeket meghatároztuk, melyek alapján elmondható, hogy a magas kálium-koncentráció hatással volt a fotoszintetikus apparátus működésére. Az összes klorofill- és karotinoid-tartalom (μg/g) esetén az szuszpenziókkal kezelt növények esetében alacsonyabb értékeket mértem, mely a kálium és magnézium ionok közötti antagonizmussal magyarázható.

Hivatkozások

Al-Dahmani, J. H., Abbasi, P. A., Miller, S. A., Hoitink, H. A. J. 2003. Suppression of bacterial spot of tomato with foliar sprays of compost extracts under greenhouse and field conditions. Plant Disease Journal 87, 913–919. https://doi.org/10.1094/PDIS.2003.87.8.913

Allaga, J., Szántóné-Palánki, E. 1997. Növényélettani gyakorlatok. Pannon Agrártudományi Egyetem, Georgikon Mezőgazdaságtudományi Kar, Növénytani és Növényélettani Tanszék. Keszthely. 129 p.

Biswal, U. C., Biswal, B., Raval, M. K. 2003. Chloroplast biogenesis from proplastid to gerontoplast. Springer, Dordrecht, The Netherlands, pp 155–242. ISBN: 978-9048164158.

Björkmann, O., Demming-Adams, B. 1987. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origins. Planta 170, 489-504. https://doi.org/10.1007/BF00402983

Brake, J. D. 1992. A Practical Guide for Composting Poultry Litter. MAFES Bulletin, p. 981.

Bueno, P., Tapias, R., López, F., Díaz, M. J. 2009. Optimizing composting parameters for nitrogen conservation in composting. Bioresource Technology 99. 5069–5077. https://doi.org/10.1016/j.biortech.2007.08.087.

Droppa, M., Erdei, S., Horváth, G., Kissimom, J., Mészáros, A., Szalai, J., Kosáry, J. 2003. Növénybiokémiai és élettani gyakorlatok. Budapesti Közgazdaságtudományi és Államigazgatási Egyetem. Budapest. 88 p.

Eudoxie, G., Martin, M. 2019. Compost Tea Quality and Fertility. In M. Larramendy,, S. Soloneski (Eds.), Organic Fertilizers - History, Production and Applications. IntechOpen. https://doi.org/10.5772/intechopen.86877

European Food Information Council (EUFIC) 2015. Annual report. https://www.eufic.org/en/images/uploads/files/AnnualReport2015.pdf

Food and Agriculture Organisation of the United Nations (FAO), WFP, IFAD. 2012 The State of Food Insecurity in the World 2012. Economic growth is necessary but not sufficient to accelerate reduction of hunger and malnutrition. Rome, FAO.

Food and Agriculture Organisation of the United Nations, 2015. World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.

Gorliczay, E., Boczonádi, I., Kiss, N. É., Tóth, F. A., Pabar, S. A., Biró, B., Kovács, L. R., Tamás, J. 2021. Microbiological Effectivity Evaluation of New Poultry Farming Organic Waste Recycling. Agriculture 11. 683. https://doi.org/10.3390/agriculture11070683

Guidi, L., Piccolo, E. L., Landi, M. 2019. Chlorophyll Fluorescence, Photoinhibition an Abiotic Stress: Does it make any difference the fact to be a C3 or C4 species? Frontiers in Plant Science 10. 174. https://doi.org/10.3389/fpls.2019.00174.

Haga, K. 1999. Development of composting technology in animal waste treatment – review. Asian – Australian Journal of Animal Science 12 (4). 604–606. https://doi.org/10.5713/ajas.1999.604

Haug, R. T. 1993. The Practical Handbook of Compost Engineering. Lewis Publishers, Boca, Raton, FL. ISBN 9780873713733.

Hegazy, M. I., Hussein, E., Salama, A. S. A. 2015. Improving physico-chemical and microbiological quality of compost tea using difference treatments during extraction. African Journal of Microbiology Research 11. 763–770. https://doi.org/10.5897/AJMR2014.7324

Hodossi, S., Kovács, A., Terbe, I. (Eds.) 2010. Szántóföldi Zöldségtermesztés; Mezőgazda Kiadó: Budapest, Hungary, 355p.

Hörtensteiner, S., Feller, U. 2002. Nitrogen metabolism and remobilization during senescence. Journal of Experimental Botany 53. 927–937. https://doi.org/10.1093/jexbot/53.370.927

Ingham, E. R. 2005. The Compost Tea Brewing Manual. US Printings, Soil Foodweb Incorporated, Oregon.

Kéri-Schmidthoffer, I. 2018. Alga szuszpenziók hatása árpa csíranövények fotoszintetikus aktivitására és Hordeum spontaneum drught responsive 4 gén termelésére. https://tud.sze.hu/images/%C3%9ANKP/20182019/tanulm%C3%A1nyk%C3%B6tet/K%C3%A9ri-Schmidthoffer%20Ildik%C3%B3.pdf

Kitajima, M., Butler, W. L. 1975. Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. Biochimica et Biophysica Acta 376. 105-115. https://doi.org/10.1016/0005-2728(75)90209-1.

Kopsell, D. A., Kopsell, D., E., Celentano, C. J. 2007. Carotenoid Pigments in Kale are Influenced by Nitrogen Concentration and Form. Journal of the Science of Food and Agriculture 87(5). https://doi.org/10.1002/jsfa.2807

Kumal, A., Patyal, A. 2020. Impacts of intensive poultry farming on ’one health’ in developing countries: Challenges and remedies. Exploratory Animal and Medical Research 10. 100–111.

Li, Y., Zhang, R., Liu, G., Chen, C., He, Y., Liu, X. 2013. Comparison of methane production potential, biodegradability, and kinetics of different organic substrates. Bioresource Technology 149. 565–569. https://doi.org/10.1016/j.biortech.2013.09.063.

Lichtenthaler, H. K., Wellbum, A. R. 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions. 603. 591–592. https://doi.org/10.1042/bst0110591.

Ludmerszki, E. 2013. A kukorica csíkos mozaik vírus (MDMV) okozta stressz hatásának vizsgálata csemegekukoricánál S-metilmetionin előkezelése esetén. XXXI. OTDK Biológia Szekció. Eötvös Lóránd Tudományegyetem, Növényélettani és Molekuláris Növénybiológiai Tanszék. 33. p.

MacLeod, M., Gerber, P., Mottet, A., Tempio, G., Falcucci, A., Opio, C., Vellinga, T., Henderson, B., Steinfeld, H. 2012. Greenhouse Gas Emissions from Pig and Chicken Supply Chains – A Global Life Cycle Assessment; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy. E-ISBN 978-92-5-107944-7.

Maxwell, K., Johnson, G. N. 2000. Chlorophyll fluorescence – a practical guide. Journal of Experimental Botany 51. 345:659-668. https://doi.org/10.1093/jexbot/51.345.659

Mézes, L., Nagy, A., Gálya, B., Tamás, J. 2015. Poultry feather wastes recycling possibility as soil nutrient. Eurasian Journal of Soil Science. 2147–2149. 244–252. http://dx.doi.org/10.18393/ejss.2015.4.244-252

Michel, F. C., Forney, L. J., Huang, A. J. F., Drew, S., Czu, P. M., Lindeberg, J. D., Reddy, C. A. 1996. Effects of tuning frequency, leaves to grass mix ratio and windrow vs pile conFigureuration on the composting of yard trimmings. Compost Science and Utilization 4. 26–43. https://doi.org/10.1080/1065657X.1996.10701816.

Najar, R., Aydi, S., Sassi-Aydi, S., Zarai, A., Abdelly, C. 2018. Effect of salt stress on photosynthesis and chlorophyll fluorescence in Medicago truncatula. Plant Biosystems – An International Journal Dealing with all Aspects of Plant Biology 153(1). 88–97. https://doi.org/10.1080/11263504.2018.1461701.

Narrod, C., Tiongco, M., Costales, A. 2008. Global poultry sector trends and external drivers of structural change. In FAO Animal Production and Health Proceedings, Proceedings of the International Poultry Conference on Poultry in the 21st century: Avian influenza and beyond, Bangkok, Thailand, 5–7 November 2007; Thieme, O., Pilling, O., Eds.; FAO: Rome, Italy

Noble, R.; Coventry, E. 2005. Suppression of soil-borne plant diseases with composts: A review. Biocontrol Science and Technology 15. 3–20. https://doi.org/10.1080/09583150400015904

R Core Team 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Riggle, D. 1996. Compost teas in agriculture. BioCycle 37. 65–67.

Slezák, K. A. 2001. Fehér termésű paprika sótűrése. Doktori értekezés. Szent István Egyetem, Zöldség- és Gombatermesztési Tanszék.

Tiquia, S. M., Tam, N. F. Y. 1998. Elimination of phytotoxicity during co-composting of spent pig-manure sawdust litter and pig sludge. Bioresource Technology 65. 43–49. https://doi.org/10.1016/S0960-8524(98)00024-8.

Varga, J., Dorogi, I., Kolonics, Z., Kubó, S. 1975. Mezőgazdasági hulladékok hasznosítása, Mezőgazdasági Kiadó, Budapest, 174. p.

Veres, Sz., Seres, E., Kiss, L., Zsombik, L. 2012. Eltérő idejű és mennyiségű nitrogén trágyázás hatása a búza fiziológiai paramétereire. In: Nagy, Z. B. (szerk.) (2012): LVIII. Georgikon Napok: Felmelegedés, ökolábnyom, élelmiszerbiztonság. 462 p. Keszthely, Magyarország Pannon Egyetem Georgikon Kar, 449–453.

Wang, Q., Awasthi, M. K., Zhang, Z., Wong, J. W. C. 2019. Sustainable Composting and Its Environmental Implications. Sustainable Resource Recovery and Zero Waste Approaches. 115–132. ISBN: 978-0-444-64200-4.

Weltzien, H. C. 1992. Biocontrol of foliar fungal diseases with compost extracts. In: Andrews, J. H. - Hirano, S. S. (Eds.) 1992. Microbial Ecology of Leaves. Springer Verlag, New York. 430–450. https://doi.org/10.1007/978-1-4612-3168-4_22.

Yohalem, D.S., Harris, R.F., Andrews, J.H. 1994. Aqueous extracts of spent mushroom substrate for foliar disease control. Compost Science and Utilization 2:67–83. ISSN: 1065-657X.

Letöltések

Megjelent

2022-12-15