Transzlációhoz kapcsolt mRNS minőségellenőrző rendszerek szerepének áttekintése normál és patogénekkel szembeni működés során
Keywords:
nonsense-mediated decay, non-stop decay, no-go decay, translation-coupled quality control, pathogen defense mechanismsAbstract
In eukaryotes various quality control (QC) mechanisms operate to maintain the proper biochemical reactions that are necessary for life. A subset of them consists the translationcoupled quality control mechanisms. These systems – namely nonsense-mediated decay (NMD), non-stop decay (NSD) and no-go decay (NGD) – operate while the mRNA is translated. They ensure that only proper mRNA can engage in more than one translation cycle and only intact, functional proteins can accumulate. Thus the integrity of the transcriptome and the proteome relies on the action of these QC systems. Emerging evidence points out that NMD not only controls the accumulation of faulty messages, but it has a regulatory role in gene expression, especially under pathogen infection in plants. There is a high possibility that the other two systems NSD and NGD also have a regulatory role in the accumulation of endogenous transcripts as well as in the coordination of defense against pathogen infections. The possible role of translation-coupled QC systems in defense highlights their ability to became new sources of resistance in breeding.
References
Arciga-Reyes, L., Wootton, L., Kieffer, M. and Davies, B. 2006. UPF1 is required for nonsensemediated mRNA decay (NMD) and RNAi in Arabidopsis. Plant J., 47. 480–489. https://doi.org/10.1111/j.1365-313X.2006.02802.x
Boccara, M., Sarazin, A., Thiébeauld, O., Jay, F., Voinnet, O., Navarro, L. and Colot, V. 2014. The Arabidopsis miR472-RDR6 silencing pathway modulates PAMP- and effector-triggered immunity through the post-transcriptional control of disease resistance genes. PLoS Pathog., 10. e1003883. https://doi.org/10.1371/journal.ppat.1003883
Brandman, O. and Hegde, R. S. 2016. Ribosome-associated protein quality control. Nature Structural & Molecular Biology 23, 7–15. https://doi.org/10.1038/nsmb.3147
Branscheid, A., Marchais, A., Schott, G., Lange, H., Gagliardi, D., Andersen, S. U., Voinnet, O. and Brodersen, P. 2015. SKI2 mediates degradation of RISC 5′-cleavage fragments and prevents secondary siRNA production from miRNA targets in Arabidopsis. Nucleic Acids Research, 43. 10975–10988. https://doi.org/10.1093/nar/gkv1014
Brown, A., Shao, S., Murray, J., Hegde, R. S. and Ramakrishnan, V. 2015. Structural basis for stop codon recognition in eukaryotes. Nature, 524. 493–496. https://doi.org/10.1038/nature14896
Campbell, M. A., Haas, B. J., Hamilton, J. P., Mount, S. M. and Buell, C. R. 2006. Comprehensive analysis of alternative splicing in rice and comparative analyses with Arabidopsis. BMC Genomics, 7. 327. https://doi.org/10.1186/1471-2164-7-327
Charneski, C. A. and Hurst, L. D. 2013. Positively charged residues are the major determinants of ribosomal velocity. PLoS Biol., 11. e1001508. https://doi.org/10.1371/journal.pbio.1001508
Ding, S.-W. and Voinnet, O. 2007. Antiviral immunity directed by small RNAs. Cell, 130. 413–426. https://doi.org/10.1016/j.cell.2007.07.039
Elkon, R., Ugalde, A. P. and Agami, R. 2013. Alternative cleavage and polyadenylation: extent, regulation and function. Nat. Rev. Genet., 14. 496–506. https://doi.org/10.1038/nrg3482
Fatscher, T., Boehm, V., Weiche, B. and Gehring, N. H. 2014. The interaction of cytoplasmic poly(A)-binding protein with eukaryotic initiation factor 4G suppresses nonsense-mediated mRNA decay. RNA, 20. 1579–1592. https://doi.org/10.1261/rna.044933.114
Filichkin, S. A., Priest, H. D., Givan, S. A., Shen, R., Bryant, D. W., Fox, S. E., Wong, W.-K. and Mockler, T. C. 2010. Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res., 20. 45–58. https://doi.org/10.1101/gr.093302.109
Franckenberg, S., Becker, T. and Beckmann, R. 2012. Structural view on recycling of archaeal and eukaryotic ribosomes after canonical termination and ribosome rescue. Curr. Opin. Struct. Biol., 22. 786–796. https://doi.org/10.1016/j.sbi.2012.08.002
Frischmeyer, P. A., van Hoof, A., O'Donnell, K., Guerrerio, A. L., Parker, R. and Dietz, H. C. 2002. An mRNA surveillance mechanism that eliminates transcripts lacking termination codons. Science, 295. 2258–2261. https://doi.org/10.1126/science.1067338
Gloggnitzer, J., Akimcheva, S., Srinivasan, A., Kusenda, B., Riehs, N., Stampfl, H., Bautor, J., Dekrout, B., Jonak, C., Jiménez-Gómez, J.M., et al. 2014. Nonsense-mediated mRNA decay modulates immune receptor levels to regulate plant antibacterial defense. Cell Host Microbe, 16. 376–390. https://doi.org/10.1016/j.chom.2014.08.010
Hori, K. and Watanabe, Y. 2005. UPF3 suppresses aberrant spliced mRNA in Arabidopsis. Plant J., 43. 530–540. https://doi.org/10.1111/j.1365-313X.2005.02473.x
Inada, T. and Aiba, H. 2005. Translation of aberrant mRNAs lacking a termination codon or with a shortened 3'-UTR is repressed after initiation in yeast. EMBO J., 24. 1584–1595. https://doi.org/10.1038/sj.emboj.7600636
Ito-Harashima, S., Kuroha, K., Tatematsu, T. and Inada, T. 2007. Translation of the poly(A) tail plays crucial roles in nonstop mRNA surveillance via translation repression and protein destabilization by proteasome in yeast. Genes Dev., 21. 519–524. https://doi.org/10.1101/gad.1490207
Jones, J. D. G. and Dangl, J. L. 2006. The plant immune system. Nature, 444. 323–329. https://doi.org/10.1038/nature05286
Kalyna, M., Simpson, C. G., Syed, N. H., Lewandowska, D., Marquez, Y., Kusenda, B., Marshall, J., Fuller, J., Cardle, L., McNicol, J. et al. 2012. Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis. Nucleic Acids Res., 40. 2454–2469. https://doi.org/10.1093/nar/gkr932
Kertész, S., Kerényi, Z., Mérai, Z., Bartos, I., Pálfy, T., Barta, E. and Silhavy, D. 2006. Both introns and long 3'-UTRs operate as cis-acting elements to trigger nonsense-mediated decay in plants. Nucleic Acids Res., 34. 6147–6157. https://doi.org/10.1093/nar/gkl737
Kugler, W., Enssle, J., Hentze, M. W. and Kulozik, A. E. 1995. Nuclear degradation of nonsense mutated beta-globin mRNA: a post-transcriptional mechanism to protect heterozygotes from severe clinical manifestations of beta-thalassemia? Nucleic Acids Res., 23. 413–418. https://doi.org/10.1093/nar/23.3.413
Lapidot, M., Karniel, U., Gelbart, D., Fogel, D., Evenor, D., Kutsher, Y., Makhbash, Z., Nahon, S., Shlomo, H., Chen, L. et al. 2015. A Novel Route Controlling Begomovirus Resistance by the Messenger RNA Surveillance Factor Pelota. PLoS Genet., 11. e1005538. https://doi.org/10.1371/journal.pgen.1005538
Lykke-Andersen, J. and Bennett, E. J. 2014. Protecting the proteome: Eukaryotic cotranslational quality control pathways. J. Cell Biol., 204. 467–476. https://doi.org/10.1083/jcb.201311103
Martínez de Alba, A. E., Moreno, A. B., Gabriel, M., Mallory, A. C., Christ, A., Bounon, R., Balzergue, S., Aubourg, S., Gautheret, D., Crespi, M. D. et al. 2015. In plants, decapping prevents RDR6-dependent production of small interfering RNAs from endogenous mRNAs. Nucleic Acids Res., 43. 2902–2913. https://doi.org/10.1093/nar/gkv119
Miller, W. A. and Koev, G. 2000. Synthesis of subgenomic RNAs by positive-strand RNA viruses. Virology, 273. 1–8. https://doi.org/10.1006/viro.2000.0421
Nyikó, T., Kerényi, F., Szabadkai, L., Benkovics, A. H., Major, P., Sonkoly, B., Mérai, Z., Barta, E., Niemiec, E., Kufel, J. et al. 2013. Plant nonsense-mediated mRNA decay is controlled by different autoregulatory circuits and can be induced by an EJC-like complex. Nucleic Acids Res., 41. 6715–6728. https://doi.org/10.1093/nar/gkt366
Orban, T. I. and Izaurralde, E. 2005. Decay of mRNAs targeted by RISC requires XRN1, the Ski complex, and the exosome. RNA, 11. 459–469. https://doi.org/10.1261/rna.7231505
Palusa, S. G. and Reddy, A. S. N. 2010. Extensive coupling of alternative splicing of pre-mRNAs of serine/arginine (SR) genes with nonsense-mediated decay. New Phytol., 185. 83–89. https://doi.org/10.1111/j.1469-8137.2009.03065.x
Peltz, S. W., Brown, A. H. and Jacobson, A. 1993. mRNA destabilization triggered by premature translational termination depends on at least three cis-acting sequence elements and one transacting factor. Genes Dev., 7. 1737–1754. https://doi.org/10.1101/gad.7.9.1737
Pisareva, V. P., Skabkin, M. A., Hellen, C. U. T., Pestova, T. V. and Pisarev, A. V. 2011. Dissociation by Pelota, Hbs1 and ABCE1 of mammalian vacant 80S ribosomes and stalled elongation complexes. EMBO J., 30. 1804–1817. https://doi.org/10.1038/emboj.2011.93
Riehs-Kearnan, N., Gloggnitzer, J., Dekrout, B., Jonak, C. and Riha, K. 2012. Aberrant growth and lethality of Arabidopsis deficient in nonsense-mediated RNA decay factors is caused by autoimmune-like response. Nucleic Acids Res., 40. 5615–5624. https://doi.org/10.1093/nar/gks195
Saito, S., Hosoda, N. and Hoshino, S. 2013. The Hbs1-Dom34 protein complex functions in non-stop mRNA decay in mammalian cells. J. Biol. Chem., 288. 17832–17843. https://doi.org/10.1074/jbc.M112.448977
Shi, C., Baldwin, I. T. and Wu, J. 2012. Arabidopsis plants having defects in nonsense-mediated mRNA decay factors UPF1, UPF2, and UPF3 show photoperiod-dependent phenotypes in development and stress responses. J. Integr. Plant. Biol., 54. 99–114. https://doi.org/10.1111/j.1744-7909.2012.01093.x
Shoemaker, C. J., Eyler, D. E. and Green, R. 2010. Dom34:Hbs1 promotes subunit dissociation and peptidyl-tRNA drop-off to initiate no-go decay. Science, 330. 369–372. https://doi.org/10.1126/science.1192430
Staiger, D. and Brown, J. W. S. 2013. Alternative splicing at the intersection of biological timing, development, and stress responses. Plant Cell, 25. 3640–3656. https://doi.org/10.1105/tpc.113.113803
Tsuboi, T., Kuroha, K., Kudo, K., Makino, S., Inoue, E., Kashima, I. and Inada, T. 2012. Dom34:hbs1 plays a general role in quality-control systems by dissociation of a stalled ribosome at the 3' end of aberrant mRNA. Mol. Cell, 46. 518–529. https://doi.org/10.1016/j.molcel.2012.03.013
Wu, X., He, W.-T., Tian, S., Meng, D., Li, Y., Chen, W., Li, L., Tian, L., Zhong, C.-Q., Han, F., et al. 2014. Pelo is required for high efficiency viral replication. PLoS Pathog. 10, e1004034. Zhang, X.-C., and Gassmann, W. 2007. Alternative splicing and mRNA levels of the disease resistance gene RPS4 are induced during defense responses. Plant Physiol., 145. 1577–1587. https://doi.org/10.1104/pp.107.108720
Downloads
Published
Issue
Section
License
Copyright (c) 2017 Szádeczky-Kardoss István

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Cikkre a Creative Commons 4.0 standard licenc alábbi típusa vonatkozik: CC-BY-NC-ND-4.0. Ennek értelmében a mű szabadon másolható, terjeszthető, bemutatható és előadható, azonban nem használható fel kereskedelmi célokra (NC), továbbá nem módosítható és nem készíthető belőle átdolgozás, származékos mű (ND). A licenc alapján a szerző vagy a jogosult által meghatározott módon fel kell tüntetni a szerző nevét és a szerzői mű címét (BY).