Transzlációhoz kapcsolt mRNS minőségellenőrző rendszerek szerepének áttekintése normál és patogénekkel szembeni működés során
Kulcsszavak:
nonsense-mediated decay, non-stop decay, no-go decay, transzláció-kapcsolt minőségellenőrzés, növényi kórokozókkal szembeni védekezésAbsztrakt
Az eukarióta sejtben a molekuláris folyamatok az információáramlás és a normál működés minden szintjére kiterjedően szigorú minőségellenőrzés alatt állnak. A minőségellenőrző rendszerek egy része az mRNS hibáit ismerni fel. Ezek a rendszerek – a nonsense-mediated decay (NMD), a non-stop decay (NSD) és a no-go decay (NGD) – a transzláció során, azzal kapcsolt módon működnek. Legfontosabb feladatuk, hogy a transzláció menetét megakasztó, hibás fehérjét kódoló mRNS-t és a képződő fehérjét felismerjék és gyorsan lebontsák. Együttes működésük védi a növényi proteom és transzkriptom épségét a transzláció során fellépő hibák felhalmozódásától. Az elmúlt évtized eredményeiből egyre világosabban látszik, hogy az NMD nem csak a hibás mRNS lebontásában, hanem a normál génkifejeződés szabályozásában is jelentős szerepet játszik, különösen növényeknél a kórokozókkal szembeni védekezés során. Az NMD-hez hasonlóan a NSD és a NGD is rendelkezik azokkal a sajátosságokkal, amik alkalmassá tehetik a génkifejeződés szabályozására és a fertőzésekkel szembeni védekezésre. A tanszláció-kapcsolt minőségellenőrző rendszerekhez kötődő változások a patogénekkel szembeni védekezésben betöltött szerepükből adódóan új rezisztenciaforrásként jelenhetnek meg a nemesítés során.
Hivatkozások
Arciga-Reyes, L., Wootton, L., Kieffer, M. and Davies, B. 2006. UPF1 is required for nonsensemediated mRNA decay (NMD) and RNAi in Arabidopsis. Plant J., 47. 480–489. https://doi.org/10.1111/j.1365-313X.2006.02802.x
Boccara, M., Sarazin, A., Thiébeauld, O., Jay, F., Voinnet, O., Navarro, L. and Colot, V. 2014. The Arabidopsis miR472-RDR6 silencing pathway modulates PAMP- and effector-triggered immunity through the post-transcriptional control of disease resistance genes. PLoS Pathog., 10. e1003883. https://doi.org/10.1371/journal.ppat.1003883
Brandman, O. and Hegde, R. S. 2016. Ribosome-associated protein quality control. Nature Structural & Molecular Biology 23, 7–15. https://doi.org/10.1038/nsmb.3147
Branscheid, A., Marchais, A., Schott, G., Lange, H., Gagliardi, D., Andersen, S. U., Voinnet, O. and Brodersen, P. 2015. SKI2 mediates degradation of RISC 5′-cleavage fragments and prevents secondary siRNA production from miRNA targets in Arabidopsis. Nucleic Acids Research, 43. 10975–10988. https://doi.org/10.1093/nar/gkv1014
Brown, A., Shao, S., Murray, J., Hegde, R. S. and Ramakrishnan, V. 2015. Structural basis for stop codon recognition in eukaryotes. Nature, 524. 493–496. https://doi.org/10.1038/nature14896
Campbell, M. A., Haas, B. J., Hamilton, J. P., Mount, S. M. and Buell, C. R. 2006. Comprehensive analysis of alternative splicing in rice and comparative analyses with Arabidopsis. BMC Genomics, 7. 327. https://doi.org/10.1186/1471-2164-7-327
Charneski, C. A. and Hurst, L. D. 2013. Positively charged residues are the major determinants of ribosomal velocity. PLoS Biol., 11. e1001508. https://doi.org/10.1371/journal.pbio.1001508
Ding, S.-W. and Voinnet, O. 2007. Antiviral immunity directed by small RNAs. Cell, 130. 413–426. https://doi.org/10.1016/j.cell.2007.07.039
Elkon, R., Ugalde, A. P. and Agami, R. 2013. Alternative cleavage and polyadenylation: extent, regulation and function. Nat. Rev. Genet., 14. 496–506. https://doi.org/10.1038/nrg3482
Fatscher, T., Boehm, V., Weiche, B. and Gehring, N. H. 2014. The interaction of cytoplasmic poly(A)-binding protein with eukaryotic initiation factor 4G suppresses nonsense-mediated mRNA decay. RNA, 20. 1579–1592. https://doi.org/10.1261/rna.044933.114
Filichkin, S. A., Priest, H. D., Givan, S. A., Shen, R., Bryant, D. W., Fox, S. E., Wong, W.-K. and Mockler, T. C. 2010. Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res., 20. 45–58. https://doi.org/10.1101/gr.093302.109
Franckenberg, S., Becker, T. and Beckmann, R. 2012. Structural view on recycling of archaeal and eukaryotic ribosomes after canonical termination and ribosome rescue. Curr. Opin. Struct. Biol., 22. 786–796. https://doi.org/10.1016/j.sbi.2012.08.002
Frischmeyer, P. A., van Hoof, A., O'Donnell, K., Guerrerio, A. L., Parker, R. and Dietz, H. C. 2002. An mRNA surveillance mechanism that eliminates transcripts lacking termination codons. Science, 295. 2258–2261. https://doi.org/10.1126/science.1067338
Gloggnitzer, J., Akimcheva, S., Srinivasan, A., Kusenda, B., Riehs, N., Stampfl, H., Bautor, J., Dekrout, B., Jonak, C., Jiménez-Gómez, J.M., et al. 2014. Nonsense-mediated mRNA decay modulates immune receptor levels to regulate plant antibacterial defense. Cell Host Microbe, 16. 376–390. https://doi.org/10.1016/j.chom.2014.08.010
Hori, K. and Watanabe, Y. 2005. UPF3 suppresses aberrant spliced mRNA in Arabidopsis. Plant J., 43. 530–540. https://doi.org/10.1111/j.1365-313X.2005.02473.x
Inada, T. and Aiba, H. 2005. Translation of aberrant mRNAs lacking a termination codon or with a shortened 3'-UTR is repressed after initiation in yeast. EMBO J., 24. 1584–1595. https://doi.org/10.1038/sj.emboj.7600636
Ito-Harashima, S., Kuroha, K., Tatematsu, T. and Inada, T. 2007. Translation of the poly(A) tail plays crucial roles in nonstop mRNA surveillance via translation repression and protein destabilization by proteasome in yeast. Genes Dev., 21. 519–524. https://doi.org/10.1101/gad.1490207
Jones, J. D. G. and Dangl, J. L. 2006. The plant immune system. Nature, 444. 323–329. https://doi.org/10.1038/nature05286
Kalyna, M., Simpson, C. G., Syed, N. H., Lewandowska, D., Marquez, Y., Kusenda, B., Marshall, J., Fuller, J., Cardle, L., McNicol, J. et al. 2012. Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis. Nucleic Acids Res., 40. 2454–2469. https://doi.org/10.1093/nar/gkr932
Kertész, S., Kerényi, Z., Mérai, Z., Bartos, I., Pálfy, T., Barta, E. and Silhavy, D. 2006. Both introns and long 3'-UTRs operate as cis-acting elements to trigger nonsense-mediated decay in plants. Nucleic Acids Res., 34. 6147–6157. https://doi.org/10.1093/nar/gkl737
Kugler, W., Enssle, J., Hentze, M. W. and Kulozik, A. E. 1995. Nuclear degradation of nonsense mutated beta-globin mRNA: a post-transcriptional mechanism to protect heterozygotes from severe clinical manifestations of beta-thalassemia? Nucleic Acids Res., 23. 413–418. https://doi.org/10.1093/nar/23.3.413
Lapidot, M., Karniel, U., Gelbart, D., Fogel, D., Evenor, D., Kutsher, Y., Makhbash, Z., Nahon, S., Shlomo, H., Chen, L. et al. 2015. A Novel Route Controlling Begomovirus Resistance by the Messenger RNA Surveillance Factor Pelota. PLoS Genet., 11. e1005538. https://doi.org/10.1371/journal.pgen.1005538
Lykke-Andersen, J. and Bennett, E. J. 2014. Protecting the proteome: Eukaryotic cotranslational quality control pathways. J. Cell Biol., 204. 467–476. https://doi.org/10.1083/jcb.201311103
Martínez de Alba, A. E., Moreno, A. B., Gabriel, M., Mallory, A. C., Christ, A., Bounon, R., Balzergue, S., Aubourg, S., Gautheret, D., Crespi, M. D. et al. 2015. In plants, decapping prevents RDR6-dependent production of small interfering RNAs from endogenous mRNAs. Nucleic Acids Res., 43. 2902–2913. https://doi.org/10.1093/nar/gkv119
Miller, W. A. and Koev, G. 2000. Synthesis of subgenomic RNAs by positive-strand RNA viruses. Virology, 273. 1–8. https://doi.org/10.1006/viro.2000.0421
Nyikó, T., Kerényi, F., Szabadkai, L., Benkovics, A. H., Major, P., Sonkoly, B., Mérai, Z., Barta, E., Niemiec, E., Kufel, J. et al. 2013. Plant nonsense-mediated mRNA decay is controlled by different autoregulatory circuits and can be induced by an EJC-like complex. Nucleic Acids Res., 41. 6715–6728. https://doi.org/10.1093/nar/gkt366
Orban, T. I. and Izaurralde, E. 2005. Decay of mRNAs targeted by RISC requires XRN1, the Ski complex, and the exosome. RNA, 11. 459–469. https://doi.org/10.1261/rna.7231505
Palusa, S. G. and Reddy, A. S. N. 2010. Extensive coupling of alternative splicing of pre-mRNAs of serine/arginine (SR) genes with nonsense-mediated decay. New Phytol., 185. 83–89. https://doi.org/10.1111/j.1469-8137.2009.03065.x
Peltz, S. W., Brown, A. H. and Jacobson, A. 1993. mRNA destabilization triggered by premature translational termination depends on at least three cis-acting sequence elements and one transacting factor. Genes Dev., 7. 1737–1754. https://doi.org/10.1101/gad.7.9.1737
Pisareva, V. P., Skabkin, M. A., Hellen, C. U. T., Pestova, T. V. and Pisarev, A. V. 2011. Dissociation by Pelota, Hbs1 and ABCE1 of mammalian vacant 80S ribosomes and stalled elongation complexes. EMBO J., 30. 1804–1817. https://doi.org/10.1038/emboj.2011.93
Riehs-Kearnan, N., Gloggnitzer, J., Dekrout, B., Jonak, C. and Riha, K. 2012. Aberrant growth and lethality of Arabidopsis deficient in nonsense-mediated RNA decay factors is caused by autoimmune-like response. Nucleic Acids Res., 40. 5615–5624. https://doi.org/10.1093/nar/gks195
Saito, S., Hosoda, N. and Hoshino, S. 2013. The Hbs1-Dom34 protein complex functions in non-stop mRNA decay in mammalian cells. J. Biol. Chem., 288. 17832–17843. https://doi.org/10.1074/jbc.M112.448977
Shi, C., Baldwin, I. T. and Wu, J. 2012. Arabidopsis plants having defects in nonsense-mediated mRNA decay factors UPF1, UPF2, and UPF3 show photoperiod-dependent phenotypes in development and stress responses. J. Integr. Plant. Biol., 54. 99–114. https://doi.org/10.1111/j.1744-7909.2012.01093.x
Shoemaker, C. J., Eyler, D. E. and Green, R. 2010. Dom34:Hbs1 promotes subunit dissociation and peptidyl-tRNA drop-off to initiate no-go decay. Science, 330. 369–372. https://doi.org/10.1126/science.1192430
Staiger, D. and Brown, J. W. S. 2013. Alternative splicing at the intersection of biological timing, development, and stress responses. Plant Cell, 25. 3640–3656. https://doi.org/10.1105/tpc.113.113803
Tsuboi, T., Kuroha, K., Kudo, K., Makino, S., Inoue, E., Kashima, I. and Inada, T. 2012. Dom34:hbs1 plays a general role in quality-control systems by dissociation of a stalled ribosome at the 3' end of aberrant mRNA. Mol. Cell, 46. 518–529. https://doi.org/10.1016/j.molcel.2012.03.013
Wu, X., He, W.-T., Tian, S., Meng, D., Li, Y., Chen, W., Li, L., Tian, L., Zhong, C.-Q., Han, F., et al. 2014. Pelo is required for high efficiency viral replication. PLoS Pathog. 10, e1004034. Zhang, X.-C., and Gassmann, W. 2007. Alternative splicing and mRNA levels of the disease resistance gene RPS4 are induced during defense responses. Plant Physiol., 145. 1577–1587. https://doi.org/10.1104/pp.107.108720
Letöltések
Megjelent
Folyóirat szám
Rovat
License
Copyright (c) 2017 Szádeczky-Kardoss István

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The articel is under the Creative Commons 4.0 standard licenc: CC-BY-NC-ND-4.0. Under the following terms: You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material. You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.