Effects of Biostimulants on Leaf Surface Area in Strawberry (Fragaria × ananassa Duch.)

Authors

  • Brigitta Simon-Gáspár Hungarian University of Agriculture and Life Sciences, Institute of Agronomy
  • Szabina Simon Hungarian University of Agriculture and Life Sciences, Institute of Agronomy
  • Hajnalka Nemes Hungarian University of Agriculture and Life Sciences image/svg+xml
  • Péter Szabó Hungarian University of Agriculture and Life Sciences, Institute of Rural Development and Sustainable Economy

DOI:

https://doi.org/10.70809/7356

Keywords:

biostimulant, strawberry, horticulture, leaf area

Abstract

Biostimulants are already widely used in agriculture and horticulture; however, controlled and well-designed experiments that allow direct comparison of individual products remain limited in the case of strawberry. The aim of our study was to draw attention to the beneficial effects of biostimulants not only in major agricultural crops but also in strawberry production. By examining the effects of the biostimulants included in the experiment (FoliQ AscoVigor, RhizoMagic, Amalgerol and Tytanit) and by publishing scientifically validated data, we intend to support practitioners, as the results may provide guidance for both commercial strawberry growers and home gardeners regarding the expected effects of the tested biostimulants. The experiment was conducted during the spring–summer period of 2023 using three popular strawberry cultivars (Senga Sengana, Korona and Sonata) at the Georgikon Campus of the Hungarian University of Agriculture and Life Sciences in Keszthely. Our results showed that, compared with the untreated control (which received irrigation water only), all treatments resulted in higher leaf surface area values. A dynamic increase in leaf development was also observed in the treated groups. Biostimulant application further enhanced leaf surface area in strawberry, although the magnitude of this increase varied depending on the product applied.

Author Biography

  • Brigitta Simon-Gáspár, Hungarian University of Agriculture and Life Sciences, Institute of Agronomy

    corresponding author
    simon.gaspar.brigitta@uni-mate.hu

References

Cassel, J. L., Maldaner, L. V. C., Bortoluzzi, M. P., Colla, L. M., Reichert Junior, F. W., Palencia, P., and Chiomento, J. L. T. 2025. Biostimulants as a Tool for Mitigating Water Deficit Stress in Strawberry Cultivation. Agronomy, 15(11), 2643. https://doi.org/10.3390/agronomy15112643

Civille, G. V. and Oftedal, K. N. 2012. Sensory evaluation techniques—Make “good for you” taste “good”. Physiology & behavior, 107(4), 598–605. https://doi.org/10.1016/j.physbeh.2012.04.015

Czinege E. 2014. A biostimulálásról egyszerűen, érthetően. Kwizda Agro, p. 22.

du Jardin, P. (2015) Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 196, 3–14. https://doi.org/10.1016/j.scienta.2015.09.021

Ebrahimi, R., Souri, M. K., Ebrahimi, F., Ahmadizadeh, M. 2012. Growth and yield of strawberries under different potassium concentrations of hydroponic system in three substrates. World Applied Sciences Journal, 16(10), 1380–1386.

Guinto, D. F. 2016. Nitrogen fertilisation effects on the quality of selected crops: A review. Agronomy New Zealand, 46, 121–132.

Horinka T. 2010. Kertészeti növények komplett tápanyagellátása. Budapest: Kertészek kis/Nagy Áruháza Kft., pp. 511–516.

Ibrahim, M. H., Nulit, R. and Sakimin, S. Z. 2021. The interactive effects of fertilizer and water stress on plant growth, leaf gas exchange and nutrient uptake on strawberry (Fragaria × ananassa, Duch). AIMS Environ. Sci. 8, 597–618. https://doi.org/10.3934/environsci.2021038

Jiang, L., Sun, T., Wang, X., Zong, X. and Wu, C. 2022. Functional physiological phenotyping and transcriptome analysis provide new insight into strawberry growth and water consumption. Front. Plant Sci. 13, 1074132. https://doi.org/10.3389/fpls.2022.1074132

Kádár I. 2008. A levéltrágyázás jelentősége és szerepe a növénytáplálásban. Acta Agronomica Óváriensis, 50(1), p. 19.

Kaya C., Ak B. E. and Higgs D. 2003. Response of Salt-Stressed Strawberry Plants to Supplementary Calcium Nitrate and/or Potassium Nitrate. Journal of Plant Nutrition, 26(3), 543–560. https://doi.org/10.1081/PLN-120017664

Khayyat, M., Tafazoli, E., Rajaee, S., Vazifeshenas, M., Mahmoodabadi, M. R., Sajjadinia, A., 2009. Effects of NaCl and Supplementary Potassium on Gas Exchange, Ionic Content, and Growth of Salt-Stressed Strawberry Plants. Journal of Plant Nutrition, 32(6), 907–918. https://doi.org/10.1080/01904160902870689

Lieten, F., Misotten, C. (1992, September). Nutrient uptake of strawberry plants (cv. Elsanta) grown on substrate. In II International Strawberry Symposium 348 (pp. 299–306). https://doi.org/10.17660/ActaHortic.1993.348.58

Mattner, S. W., Villalta, O. N., McFarlane, D. J., Islam, M. T., Arioli, T. and Cahill, D. M. 2023. The biostimulant effect of an extract from Durvillaea potatorum and Ascophyllum nodosum is associated with the priming of reactive oxygen species in strawberry in south-eastern Australia. J. Appl. Phycol. 35, 1789–1800. https://doi.org/10.1007/s10811-023-02979-0

Nagy P. T., Nyéki J., Szabó Z. and Sándor Zs. 2008. Floral analysis as an early plant analytical tool to diagnose nutritional status of fruit trees. Cereal Research Communications. 36. pp. 1335 1338. https://doi.org/10.1556/CRC.36.2008.Suppl.1

Papp J. 1997. Szamóca. In: Soltész M. (szerk.): Integrált gyümölcstermesztés. Budapest: Mezőgazda Kiadó, pp. 751, 753–756, 766–767.

Papp J. 1999. Szamócatermesztés. In: Papp J., Porpáczy A. (szerk.): Szamóca, málna Bogyósgyümölcsűek I. Budapest: Mezőgazda Kiadó, pp. 42–44, 78–79, 105–107.

Papp J. 2004. Szamóca. In: Papp J. (szerk.): A gyümölcsök termesztése 2. Budapest: Mezőgazda Kiadó, pp. 365, 368–369, 386–387.

Poling, E. B. 2016. An introductory guide to strawberry plasticulture. Department of horticultural science, NC State.

Rana, V. S., Lingwal, K., Sharma, S., Rana, N., Pawar, R., Kumar, V. and Sharma, U. 2023. Enhancement in growth, yield and nutritive characteristics of strawberry (Fragaria × ananassa Duch.) by the application of biostimulant: Seaweed extract. Acta Physiol. Plant. 45, 122.

Tagliavini, M., Baldi, E., Lucchi, P., Antonelli, M., Sorrenti, G., Baruzzi, G., Faedi, W. 2005. Dynamics of nutrients uptake by strawberry plants (Fragaria× Ananassa Dutch.) grown in soil and soilless culture. European Journal of Agronomy, 23(1), 15–25. https://doi.org/10.1016/j.eja.2004.09.002

Trejo-Téllez, L. I. and Gómez-Merino, F. C. 2014. Nutrient management in strawberry: Effects on yield, quality and plant health. Strawberries: Cultivation, antioxidant properties and health benefits, 239–267.

Wise, K. and Selby-Pham, J. 2024. Strawberry field trial in Australia demonstrates improvements to fruit yield and quality control conformity, from application of two biostimulant complexes. N. Z. J. Crop Hortic. Sci. 53, 3124–3139. https://doi.org/10.1080/01140671.2024.2370565

Downloads

Published

2025-12-17

Issue

Section

Articles

How to Cite

Simon-Gáspár, B., Simon, S., Nemes, H., & Szabó, P. (2025). Effects of Biostimulants on Leaf Surface Area in Strawberry (Fragaria × ananassa Duch.). GEORGIKON FOR AGRICULTURE, 29(1), 32-38. https://doi.org/10.70809/7356

Most read articles by the same author(s)

<< < 1 2