Applying vegetation maps in the calculation of plant communities area in Kis-Balaton

Authors

  • Veronika Kozma-Bognár University of Pannonia, Georgikon Faculty, Keszthely, Hungary
  • Péter Szeglet University of Pannonia, Georgikon Faculty, Keszthely, Hungary
  • Piroska Pomogyi Middle-Transdanubian Water Directorate, Székesfehérvár

Keywords:

Kis-Balaton, aerial photography, vegetation maps, plant communities, macrovegetation changes

Abstract

Vegetation maps of Kis-Balaton were made since 1980 knowing the changes of the marsh vegetation. For the changes of the environmental factors for the stresses the plants reacts, they often react as indicators, so we can make conclusions for the ecological condition, for the environmental stresses, and for the biodiversity of the biotopes. In this paper the results of the vegetation mapping made for the Lake Fenéki in the time-series are shown, in connection with area calculation. Despite of the big heterogeneity characteristic for our sampling area using the times-series aerial photographs the dynamic of the changes can be easy describe, and calculate. Considering spatial spreading the main plant communities, and using the crop coefficient the evaluation of the regional evaporation can be estimated more exactly.

Author Biographies

  • Veronika Kozma-Bognár, University of Pannonia, Georgikon Faculty, Keszthely, Hungary

    kbv@georgikon.hu

  • Péter Szeglet, University of Pannonia, Georgikon Faculty, Keszthely, Hungary

    szeglet@georgikon.hu

  • Piroska Pomogyi, Middle-Transdanubian Water Directorate, Székesfehérvár

    corresponding author
    pomogyi@kdtvizig.hu

References

Anda, A. 2014. Teixeira da Silva J. A., Soos G. Evapotranspiration and crop coefficient of the common reed at the surroundings of Lake Balaton, Hungary. Aquatic Botany (accepted for publication). https://doi.org/10.1016/j.aquabot.2014.01.008

Berke, J. 2010. Using Spectral Fractal Dimension in Image Classification, Innovations and Advances in Computer Sciences and Engineering, Springer Science+Business Media B. V. 2010. https://doi.org/10.1007/978-90-481-3658-2_41

Dömötörfy, Zs., Reeder, D. and Pomogyi P. 2003. Changes in the macrovegetation of the Kis-Balaton wetlands over the last two centuries: a GIS perspective. Hydrobiologia. 506 (1–3) 671–679. https://doi.org/10.1023/B:HYDR.0000008598.56151.5e

Dronova, I., Gong, P., Clinton, N. E., Wang, L., Fu, W., Qi, S. and Liu Y. 2012. Landscape analysis of wetland plant functional types: The effects of image segmentation scale, vegetation classes and classification methods. Remote Sensing of Environment, Volume 127. pp. 357–369. https://doi.org/10.1016/j.rse.2012.09.018

Goetz, S., Steinberg, D., Dubayah, R. and Blair B. 2003. Laser remote sensing of canopy habitat heterogeneity as a predictor of bird species richness in an eastern temperate forest, USA. Remote Sensing of Environment. 108 (3) 254–263. https://doi.org/10.1016/j.rse.2006.11.016

Homepage of West-transdanubian Water Directorate: http://www.kisbalaton.hu/feneki_to.html.

Kelly, M., Tuxen, K. A. and Stralberg D. 2011. Mapping changes to vegetation pattern in a restoring wetland: Finding pattern metrics that are consistent across spatial scale and time. Ecological Indicators. 11 (2) 263–273. https://doi.org/10.1016/j.ecolind.2010.05.003

Kleinod, K., Wissen, M. and Bock M. 2005. Detecting vegetation changes in a wetland area in Northern Germany using earth observation and geodata. Journal for Nature Conservation. 13 (2–3) 115–125. https://doi.org/10.1016/j.jnc.2005.01.004

Murphy, K. J. 2002. Plant communities and plant diversity in softwater lakes of northern Europe. Aquatic Botany. 73 (4) 287–324. https://doi.org/10.1016/S0304-3770(02)00028-1

Nagendra, H., Lucas, R., Honrad,o J. P., Jongman, R. H. G, Tarantino, C., Adamo, M. and Mairota P. 2013. Remote sensing for conservation monitoring: Assessing protected areas, habitat extent, habitat condition, species diversity, and threats. Ecological Indicators. 33. 45–59. https://doi.org/10.1016/j.ecolind.2012.09.014

Pomogyi, P. 1985. Az elárasztás hatására bekövetkezett változások a Kis-Balaton makrovegetációjában (Nach Überflutung eingetretene Veränderungen in der Macrovegetation des Schutzsystems Kleiner Balaton.) XXVIII. Georgikon Napok, Keszthely, 1985. augusztus 22–23. II. 709–716.

Pomogyi, P. ed. 1996. 2. Kis-Balaton Ankét. Összefoglaló értékelés a Kis-Balaton Védőrendszer 1991–1995 közötti kutatási eredményeiről. Keszthely, 1996. szept. 9–11. pp. 713.

Pomogyi, P., Dömötörfy, Zs. 2002. Mennyi nádas pusztult ki a KisBalatonon a Vízvédelmi Rendszer üzemelése során? Hidrológiai Közlöny. 82 (1–12. klnsz.) 96–98.

Szeglet, P., Dömötörfy, Zs. and Pomogyi P. 1999. A nádas határ változása a Kis-Balatonon az 1950-es évektől napjainkig. XL. Hidrobiológus Napok Tihany, 1998. október 7–9. Hidrológiai Közlöny. 79 (6) 386–387.

Zlinszky, A., Mücke, W., Lehner, H., Briese, C. and Pfeifer N. 2012. Categorizing Wetland Vegetation by Airborne Laser Scanning on Lake Balaton and Kis-Balaton, Hungary. Remote Sensing. 4. 1617–1650. https://doi.org/10.3390/rs4061617

Downloads

Published

2014-12-29

Issue

Section

Articles

How to Cite

Kozma-Bognár, V., Szeglet, P., & Pomogyi, P. (2014). Applying vegetation maps in the calculation of plant communities area in Kis-Balaton. GEORGIKON FOR AGRICULTURE, 18(2), 19-33. https://journal.uni-mate.hu/index.php/gfa/article/view/6728

Most read articles by the same author(s)