Assessing oil retention map with pedotransfer fuctions for a study area at Keszthely, Hungary

Authors

  • István Sisák University of Pannonia, Georgikon Faculty, Keszthely, Hungary
  • András Makó University of Pannonia, Georgikon Faculty, Keszthely, Hungary
  • Tamás Pőcze University of Pannonia, Georgikon Faculty, Keszthely, Hungary

Keywords:

oil retention, pedotransfer functions, digital soil mapping methods, liquid limit according to Arany

Abstract

 

Oil spills are among the most common sources of soil pollution therefore, it is necessary to spatially assess the sensitivity of soils. Our goal was to develop a method which is suitable for such assessment. Oil retention at various pressures was determined in an earlier study and it was found that soil organic matter and sand content determine the oil retention at one bar. However, regular soil tests in Hungary do not include particle size distribution measurements hence sand content only liquid limit according to Arany is determined and generally, spatial density of recent soil tests is insufficient to perform spatial assessment. We have developed a method to estimate the most probable particle size percentages based on regular measurements and we used all available high resolution soil legacy data to derive spatial estimates of sand and organic matter content for a study area at Keszthely, Hungary. From these base maps, oil retention of the upper soil layer at one bar pressure was assessed. Because of the averaging nature of the used statistical methods (regression analysis, kriging) the values around the average (19.1 vol %) were frequent in the estimated map but large or small values which were present among the data used to develop the estimating equation were generally missing.

Author Biography

  • István Sisák, University of Pannonia, Georgikon Faculty, Keszthely, Hungary

    corresponding author
    talajtan@georgikon.hu

References

Arany, S. 1943. A talajok rögszerkezete. Mezőgazd. Kut. 16. 220–249.

Chiu, C. F., Yan, W. M., Yuen, K. V. 2012. Estimation of water retention curve of granular soils from particle-size distribution - a Bayesian probabilistic approach. Canadian Geotechnical Journal. 49. 1024–1035. https://doi.org/10.1139/t2012-062

Dobos, E., Bialkó, T., Michéli, E., Kobza, J. 2010. Legacy soil data harmonization and database development. p. 309–323. In J. L. Boettinger, D. W. Howell, A. C. Moore, A. E. Hartemink, S. Kienast-Brown (eds.) Digital Soil Mapping. Progress in Soil Science 2, Springer Science+Business Media B. V., Berlin, Heidelberg. https://doi.org/10.1007/978-90-481-8863-5_25

Ébényi, Gy. 1942. Magyarázatok Magyarország geológiai és talajismereti térképéhez. Keszthely. No. 5258/4. M. Kir. Földtani Int., Budapest.

EC 2007. Directive 2007/2/EC of the European Parliament and of the Council of 14 March 2007 establishing an Infrastructure for Spatial Information in the European Community (INSPIRE).

Fingas, M. 2013. The basics of oil cleanup. CRC Press Taylor and Francis. Boca Raton, 11–20. https://doi.org/10.1201/b13686

Géczy, G. 1960. Újabb mezőgazdasági talajhasznosítási osztályozási rendszer. Agrokémia és Talajtan. 9. 405–418.

Hernádi, H. 2012. A talaj olajvisszatartó képességének becslési lehetőségei. Agrokémia és Talajtan. 61. 399–416. https://doi.org/10.1556/agrokem.60.2012.2.12

Kreybig, L. 1937. A M. Kir. Földtani Intézet talajfelvételi vizsgálati és térképezési módszere. M. Kir. Földtani Int., Budapest.

Makó, A. 2002. Measuring and estimating the pressure-saturation curves on undisturbed soil samples using water and NAPL. Agrokémia és Talajtan. 51. 27–36. https://doi.org/10.1556/agrokem.51.2002.1-2.4

Makó, A. 2005. Measuring the two-phase capillary pressure-saturation curves of soil samples saturated with nonpolar liquids. Communications in Soil Sciences and Plant Analysis. 36. 439–453. https://doi.org/10.1081/CSS-200043170

Makó, A., Hernádi, H. 2012. Kőolajszármazékok viselkedése a talajban. p: 13-77. In Makó A., Hernádi H. (szerk.) Kőolajszármazékok a talajban: talajfizikai kutatások. Pannon Egyetem Georgikon Kar, Keszthely.

Makó, A., Tóth, B., Hernádi, H., Farkas, Cs., Marth, P. 2010. Introduction of the Hungarian Detailed Soil Hydrophysical Database (MARTHA) and its use to test external pedotransfer functions. Agrokémia és Talajtan. 59. 29–39. https://doi.org/10.1556/agrokem.59.2010.1.4

McBratney, A., Mendonca-Santos, M. L., Minasny, B. 2003. On digital soil mapping. Geoderma. 117. 3–52. https://doi.org/10.1016/S0016-7061(03)00223-4

Németh, T., Stefanovits, P., Várallyay, Gy. 2005. Talajvédelem. Országos Talajvédelmi Stratégia tudományos háttere. Kármentesítési tájékoztató. Környezetvédelmi és Vízügyi Minisztérium. Budapest.

Pásztor, L., Szabó, J., Bakacsi, Zs. 2010. Application of the Digital Kreybig Soil Information System for the delineation of naturally handicapped areas in Hungary. Agrokémia és Talajtan. 59. 47–56. https://doi.org/10.1556/agrokem.59.2010.1.6

Sisák, I., Bámer, B. 2007. A teljes termőterületet magába foglaló nagyléptékű talajtérkép létrehozásának szükségessége és lehetősége. p. 182–192. In T. Tóth, G. Tóth, T. Németh and Z. Gaál (eds.) Földminősítés és földhasználati információ. MTA-TAKI, Budapest.

Downloads

Published

2025-05-19

Issue

Section

Articles

How to Cite

Sisák, I., Makó, A., & Pőcze , T. (2025). Assessing oil retention map with pedotransfer fuctions for a study area at Keszthely, Hungary. GEORGIKON FOR AGRICULTURE, 17(3), 73-90. https://journal.uni-mate.hu/index.php/gfa/article/view/6708

Similar Articles

1-10 of 114

You may also start an advanced similarity search for this article.