Climate change and its effect on some physiological processes of the agricultural plants

A literature review

Authors

  • Doan Van Cong University of Pannonnia, Georgikon Faculty, Keszthely

Keywords:

Global warming, climate change, greenhouse gases, temperature, precipitation, photosynthesis, stomatal resistance, flowering time

Abstract

Climate change is one of the most important issues because of its impacts the human being. Greenhouse gases (GHGs), among others, including carbon dioxide (CO2), nitrogen dioxide (NO2), and methane (CH4) are the main components causing global warming. Different kinds of sources exist; the two most important ones are industrial emission and agricultural activities. Increasing Earth's surface temperature, changing precipitation and losing coastal land due to sea level increase are the phenomenon of climate change that can be easily identified every day. Agricultural activities are strongly associated with the climatic conditions, because most of the plant’s physiological processes such as photosynthesis, stomatal resistance, canopy temperature and flowering time are affected by environmental factors as light, temperature and CO2 concentration. Therefore, understanding of these phenomena and its effects on agricultural activities will assist us in finding good solutions for better adaptation to climate change.

Author Biography

  • Doan Van Cong, University of Pannonnia, Georgikon Faculty, Keszthely

    corresponding author
    vancong2508@gmail.com 

References

Abu-Asab, M. S., Peterson, P. M., Shetler, S. G., Orli, S. S. 2001. Earlier plant flowering in spring as a response to global warming in the Washington, DC, area. Biodiversity and Conservation. 10 (4) 597–612. http://doi.org/10.1023/A:1016667125469

Ainsworth, E. A., Rogers, A. 2007. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ. 30. 258–270. https://doi.org/10.1111/j.1365-3040.2007.01641.x

Allen, Jr., L. H. 1990. Plant Responses to Rising Carbon Dioxide and Potential Interactions with Air Pollutants, J. Environ. Qual. 19. 15–34. https://doi.org/10.2134/jeq1990.00472425001900010002x

Alonso, J. M., Ansón, J. M., Espiau, M. T., Socias i Company, R.. 2011. Stability of the almond blooming date in a changing climate. Acta. Hortic. (ISHS), 912. 337–342. https://doi.org/10.17660/ActaHortic.2011.912.49

Anda, A. 2006. Modeling maize response to climate modification in Hungary, 1(2) 90–98.

Anda, A., Dióssy, L. 2010. Simulation in maize-water relations: A case study for continental climate (Hungary). Ecohydrology. 3 (4) 487–496. https://doi.org/10.1002/eco.150

Anda, A., Kocsis, T. 2007. Evaluation of the Influence of Climatic Changes on Maize Energy Consumption in Hungary.

Anda, A., Kocsis, T. 2008. Impact of atmospheric CO2 enrichment on some elements of microclimate and physiology of locally grown maize. Applied Ecology and Environmental Research. 6 (1) 85–94. https://doi.org/10.15666/aeer/0601_085094

Arnfield, A. J. 2003. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. International Journal of Climatology. 23. 1–26. https://doi.org/10.1002/joc.859

Aulakh, M. S,, Wassmann, R., Bueno, C., Kreuzwieser, J., Rennenberg, H. 2001. Characterization of root exudates at different growth stages of ten rice (Oryza sativa L.) cultivars. Plant Biol. 3. 139–148. https://doi.org/10.1055/s-2001-12905

Aulakh, M. S., Khera, T. S., Doran, J. W. 2000. Mineralization and denitrification in upland, nearlysaturated and flooded subtropical soil. II. Effect of organic varying in N contents and C:N ratio. Biol Fertil Soils. 31. 168–174. https://doi.org/10.1007/s003740050641

Aydin, F. 2010. Secondary school students' perceptions towards global warming: a phenomenographic analysis. Sci. Res. Essays. 5 (12) 1566–1570.

Barker, J. R., Ross, M. H., Ross. 1999. An introduction to global warming, Am. J. Physical. 67. 1216–1226. https://doi.org/10.1119/1.19108

Bartholy, J., Pongracz, R., Gelybo, G, Y., Kern, A. 2007a. What climate can we expect in Central/Eastern Europe by 2071–2100. In Bioclimatology and natural hazards. International Scientific Conference, Polana nad Detvou, Slovakia. 17–20., 2007, ISBN 978-80-228-17-60-8

Bartholy, J., Pongracz, R., Gelybo, G, Y. 2007b. Regional Climate Change Expected in Hungary for 2071–2100. Applied Ecology and Environmental Research. 5 (1) 1–17. https://doi.org/10.15666/aeer/0501_001017

Bouwman, A. F. 1996. Direct emissions of nitrous oxide from agricultural soils. Nutr Cycle Agroecosyst. 46. 53–70. https://doi.org/10.1007/BF00210224

Brown, H. A., Waggner-Riddle, C., Thurtell, G. W. 2000. Nitrous oxide flux from solid dry manure in storage as affected by water content and redox potential. J Environ Qual. 29. 630–638. https://doi.org/10.2134/jeq2000.00472425002900020034x

Brown, R. A,. Rosenberg, N. J. 1997. Sensitivity of Crop Yield and Water Use to Change in a Range of Climatic Factors and CO2 Concentrations: A Simulation Study Applying EPIC to the Central U.S.A. Agricultural and Forest Meteorology. 83. 171–203. https://doi.org/10.1016/S0168-1923(96)02352-0

Brysse, K., Oreskes, N., O'Reilly, J., Oppenheimer, M., 2013. Climate change prediction: erring on the side of least drama? Global Environ. Change. 23 (1) 327–337. https://doi.org/10.1016/j.gloenvcha.2012.10.008

Bunce, J. A., 2004. Carbon dioxide effects on stomatal responses to the environment and water use by crops under field conditions. Oecologia. 140. 1–10. https://doi.org/10.1007/s00442-003-1401-6

Butterbach-Bahl, K., Papen, H., Rennenberg. H 1997. Impact of gas transport through rice cultivars on methane emission from rice paddy fields. Plant Cell Environ. 20.1175–1183 https://doi.org/10.1046/j.1365-3040.1997.d01-142.x

Cai, W., Cowan, T. 2008. Evidence of impacts from rising temperature on inflows to the MurrayeDarling basin. Geophys. Res. Lett. 35. pl07701. https://doi.org/10.1029/2008GL033390

Cai, Z., Shan, Y., Xu, H. 2007. Mini-review: effects of nitrogen fertilization on CH4 emission from rice fields. Soil Sci. Plant Nutr. 53. 353–361. https://doi.org/10.1111/j.1747-0765.2007.00153.x

Canadell, J. G., Le Quere, C., Raupach, M. R., Field, C. B., Buitenhuis, E. T., Ciais, P., Conway, T. J., Gillett, R. A., Houghton, R. A., Marland, G. 2007. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc. Natl. Acad. Sci. 104. 18866–18870. https://doi.org/10.1073/pnas.0702737104

Carbone, G. J., Kiechle, W., Locke, C., Mearns, L. O., Mcdaniel, L., Downton, M. W. 2003. Response of soybean and sorghum to varying spatial scales of climate change scenarios in the southeastern United States. Climate Change. 60. 73–98. https://doi.org/10.1023/A:1026041330889

Chen, X. P., Cui, Z. L., Fan, M. S., Vitousek, P., Zhao, M., Ma, W. Q., Wang, Z. L., Zhang, W. J., Yan, X. Y., Yang, J. C., Deng, X. P., Gao, Q., Zhang, Q., Guo, S. W., Ren, J., Li, S. Q., Ye, Y. L., Wang, Z. H., Huang, J. L., Tang, Q. Y., Sun, Y. X., Peng, X. L., Zhang, J. W., He, M. R., Zhu, Y. J., Xue, J. Q., Wang, G. L., Wu, L., An, N., Wu, L. Q., Ma, L., Zhang, W. F., Zhang, F. S. 2014. Producing more grain with lower environmental costs. Nature. 514. 486–489. https://doi.org/10.1038/nature13609

Climate Change. 1992. The Supplementary Report of the IPCC Scientific Assessment, prepared by Intergovernmental Panel on Climate Change, World Meteorological Organization/United Nations Environment Programme, Cambridge University Press. p. 200.

Cole, C. V., Duxbury, J., Freney, J., Heinemeyer, O., Minami, K., Mosier, A., Paustian, K., Rosenberg, N., Sampson, N., Zhao, Q. 1997. Global estimates of potential mitigation of greenhouse gas emissions by agriculture. Nutr. Cycl. Agroecosyst. 49 (1–3) 221–228. https://doi.org/10.1023/A:1009731711346

Crepin ˇ sek, ˇ Z., Stampar, ˇ F., Kajfez-Bogataj, ˇ L., Solar, A. (2012): The response of Corylus avellana L. phenology to rising temperature in north-eastern Slovenia. Int. J. Biometeorol. 56: 681–694, https://doi.org/10.1007/s00484-011-0469-7

Commonwealth Scientific and Industrial Research Organisation (CSIRO) 2008. Regional Rainfall Projections in Australia to 2100 for Three Climate Cases, Data Prepared for the Garnaut Climate Change Review. CSIRO, Aspendale, Victoria.

Cure, J.D., Acock, B. 1986. Crop responses to carbon dioxide doubling: a literature survey. Agricultural and Forest Meteorology. 87. 253–272. https://doi.org/10.1016/0168-1923(86)90054-7

Da Matta, F. M., Grandis, A., Arenque, B. C., Buckeridge, M. S. 2010. Impacts of climate changes on crop physiology and food quality. - Food Res. Int. 43. 1814–1823. https://doi.org/10.1016/j.foodres.2009.11.001

Dai, A. 2013. Increasing drought under global warming in observations and models. Nature Climate Change. 3. 52–58. https://doi.org/10.1038/nclimate1633

Dale, V. H., Houghton, R. A., Grainger, A., Lugo, A. E., Brown, S. 1993. Emissions of greenhouse gases from tropical deforestation and subsequent uses of the land. - In: Sustainable Agriculture and the Environment in the Humid Tropics. National Academy Press,Washington D.C. p. 215–260.

Dasgupta, S., Laplante, B., Murray, S., Wheeler, D. 2009. Sea-Level Rise and Storm Surges. - Policy Research Working. The World Bank - Development Research Group -Environment and Energy Team, Washington. p. 4901.

De Boeck, H. J., Nijs, I. 2011. An alternative approach for infrared heater control in warming and extreme event experiments in terrestrial ecosystems. J Ecol. 99. 724–728. https://doi.org/10.1111/j.1365-2745.2011.01799.x

De-Richter, R. K., Ming, T., Caillol, S., Liu, W. 2016. Fighting global warming by GHG removal: Destroying CFCs and HCFCs in solar-wind power plant hybrids producing renewable energy with nointermittency. International Journal of Greenhouse Gas Control, G.model IJGGC 1817. 1–24. https://doi.org/10.1016/j.ijggc.2016.02.027

Dickinson, R. E., Henderson-Sellers, C., Rosenzweig, C., Sellers, P. J. 1991. Evapotranspiration models with canopy resistance for use in climate models, a review. Agricultural and Forest Meteorology. 54. 373–388. https://doi.org/10.1016/0168-1923(91)90014-H

El Yaacoubi, A., Malagi, G., Oukabli, A., Hafidi, M., Legave, J. M. 2014. Global warming impact on floral phenology of fruit trees species in Mediterranean region. Scientia Horticulturae. 180. 243–253. https://doi.org/10.1016/j.scienta.2014.10.041

Ellis, R. H. 1990. Quantitative relations between temperature and crop development and growth. - In: Jackson, M. J. et al.(Eds.) Climate change and genetic resources, London Belhaven: 85–115.

El-Shamy, M. E., Seierstad, I. A., Sorteberg, A. 2009. Impacts of climate change on Blue Nile flows using bias-corrected GCM scenarios. - Hydrol. Earth Syst. Sci. 13. 551–565. https://doi.org/10.5194/hess-13-551-2009

El-Sharkawy, M. A. 2014. Global warming causes and impacts on agroecosystems productivity and food security with emphasis on cassava comparative advantage in the tropics/subtropics. Photosynthetica. 52 (2) 161–178. https://doi.org/10.1007/s11099-014-0028-7

Environmental Protection Agency (EPA). 2013a. Frequently asked questions about global warming and climate change: back to basics Available at: http://www.epa.gov/climatechange/basics/

Environmental Protection Agency (EPA) 2013b. Overview of greenhouse gases Available at: http://www.epa.gov/climatechange/ghgemissions/gases.html

Fodor, N., Pásztor, I., 2010. The agro-ecological potential of Hungary and its prospective deveploment due to climate change. Appl. Ecol. Environ.Res. 8. 177–190.

Food and Agricultural Organization (FAO). 2002. World Agriculture towards 2015/ 2030. An FAO Perspective. FAO, Rome.

Food and Agriculture Organization (FAO). 2007. Crop Prospects and Food Situation (no. 5, October 2007) http://www.fao.org/docrep/010/ah873e/ah873e04.htm.

Food and Agriculture Organization (FAO). 2010. Crop Prospects and Food Situation (no. 4, December 2010) http://www.fao.org/docrep/013/al972e/al972e00.pdf.

Food and Agriculture Organization (FAO). 2011. Crop Prospects and Food Situation (no. 4, December 2011) http://www.fao.org/docrep/014/al983e/al983e00.pdf.

Food and Agriculture Organization (FAO). 2012. Crop Prospects and Food Situation (no. 3, October 2012) http://www.fao.org/docrep/016/al992e/al992e00. pdf#page=30.

Foong, S.K. 2006. An accurate analytical solution of a zero-dimensional greenhouse model for global warming, Eur. J. Phys. 27. 933–942. https://doi.org/10.1088/0143-0807/27/4/024

Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., Haywood, J., Lean, J., Lowe, D. C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schultz, M., Van Dorland, R. 2007. Changes in atmospheric constituents and in radiative forcing. Climate Change. 20 (7).

Gaba, V., Tsror, L. 2014. Abstracts of EAPR Pathology Section Meeting on Climate Change/Global Warming: Effects on Potato Diseases/Pests, Jerusalem, 17-21 November 2013 Abstracts. Potato Research. 57 (2) 145–181. https://doi.org/10.1007/s11540-014-9258-0

Garcia, J. L., Patel, B. C. K., Ollivier, B. 2000. Taxonomic, Phylogenetic and ecological diversity of methanogenic archaeal. Anaerobe. 6. 205–226. https://doi.org/10.1006/anae.2000.0345

Gerten, D., Rost, S., Bloh, W., Lucht, W. 2008. Causes of change in 20th century global river discharge. Geophysical Research Letters 35. L20405. https://doi.org/10.1029/2008GL035258

Giménez-Benavides, L., García-Camacho, R., Iriondo, J. M., Escudero, A. 2010. Selection on flowering time in Mediterranean high-mountain plants under global warming. Evolutionary Ecology. 25 (4) 777–794. https://doi.org/10.1007/s10682-010-9440-z

Girvetz, E. H., Zganjar, C., Raber, G.T. 2009. Applied climate change analysis: the climate Wizard Tool. - PLoS ONE: https://doi.org/10.1371/journal.pone.0008320

Global Change Research Information Office (GCRIO). 2011. What human activities contribute to climate change? https://www.gcrio. org

Glynn, S. M., Duit, R. 1995. Learning science meaningfully: Constructing conception model. In: Glynn, S.M., Duit, R. (Eds.), Learning Science in the School: Research Reforming Practice. Lawrence Erlbaum, Mahwah, NJ, pp. 3–34.

Grab, S., Craparo, A. 2011. Advance of apple and pear tree full bloom dates in response to climate change in the southwestern Cape, South Africa: 1973-2009. Agric. For. Meterol. 151. 406–413. https://doi.org/10.1016/j.agrformet.2010.11.001

Grace, P. R., Philip Robertson, G., Millar, N., Colunga-Garcia, M., Basso, B., Gage, S. H., Hoben, J. 2011. The contribution of maize cropping in the Midwest USA to global warming: A regional estimate. Agricultural Systems. 104 (3) 292–296. https://doi.org/10.1016/j.agsy.2010.09.001

Grant, B., Smith, W. N., Desjardins, R., Lemke, R., Li, C. 2004. Estimated N2O and CO2 emissions as influenced by agricultural practices in Canada. Clim. Change. 65 (3) 315–332 https://doi.org/10.1023/B:CLIM.0000038226.60317.35

Gul, A., Topay, M., Ozaydin, O. 2009. Against the threat of global warming, the importance of urban forest. In: Paper Presented at the International Davraz Congress, Isparta, Turkiye.

Hansen, J., Sato, M., Ruedy, R., Lo, K., Lea, D. W., Medina Elizade, M. 2006. Global temperature change. Proceedings of the National Academy of Sciences of the United States of America, 103. 14288–14292. https://doi.org/10.1073/pnas.0606291103

Hansen, J. W., Mason, S. J., Sun, L., Tall, A. 2011. Review of seasonal climate forecasting for agriculture in sub-Saharan Africa. Exp. Agric. 47. 205–240. https://doi.org/10.1017/S0014479710000876

Harte J, Shaw R. 1995. Shifting dominance within a Montane vegetation community: results of a climate-warming experiment. Science. 267. 876–880. https://doi.org/10.1126/science.267.5199.876

Harte, J., Torn, M. S., Chang, F. R., Feifarek, B., Kinzig, A. P., Shaw, R., Shen, K. 1995. Global warming and soil microclimate: results from a meadow-warming experiment. Ecol Appl. 5. 132–50. https://doi.org/10.2307/1942058

Houghton, J. T., Jenkins, G. J., Ephraums, J. J. 1990. Climatic Change: The IPCC Scientific Assessment. Cambridge University Press, Cambridge. pp. 364.

Houghton, J. T., Ding, J., Griggs, D. J., et al., Climate Change. 2001. The Scientific Basis, in Contribution of Working Group 1 in the Third Assessment Report of Intergovernmental Panel on Climate Change, Cambridge: Univ. Press, 2001

Houghton, R. A., Carbon., Turner, B. L., Clark, W. C., Kates, R. W. 1990. The Earth as Transformed by Human Action. Cambridge University Press, Cambridge, pp. 393–408.

https://www.epa.gov/climate-indicators/climate-change-indicators-atmospheric-concentrations-greenhouse-gases (date 16/8/2016).

https://www.ipcc.ch/pdf/assessment-report/ar5/wg3/ipcc_wg3_ar5_summary-for-policymakers.pdf (Date 26/09/2016).

https://www.ipcc.ch/pdf/assessment-report/ar5/wg2/ar5_wgII_spm_en.pdf (Date 26/09/2016). https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_SPM_FINAL.pdf (Date 26/09/2016).

http://www.ucsusa.org/global_warming/science_and_impacts/science/each-countrys-share-of-co2.html#.V31Z0fl97IU (date 06/6/2016).

Huang, Y., Zou, J., Zheng, X., Wang, Y., Xu, X. 2004. Nitrous oxide emissions as influenced by amendment of plant residues with different C: N ratios. Soil Biol. Biochem. 36 (6) 973–981. https://doi.org/10.1016/j.soilbio.2004.02.009

Hyde, K. D., Fryar, S., Tian, Q., Bahkali, A. H., Xu, J. 2016. Lignicolous freshwater fungi along a north-south latitudinal gradient in the Asian/Australian region; can we predict the impact of global warming on biodiversity and function? Fungal Ecology. 19. 190–200. https://doi.org/10.1016/j.funeco.2015.07.002

Iizumi, T., Ramankutty, N. 2015. How do weather and climate influence cropping area and intensity? Global Food Security. 4. 46–50. https://doi.org/10.1016/j.gfs.2014.11.003

Iizumi, T., Yokozawa, M., Sakurai, G., Travasso, M. I., Romanenkov, V., Oettli, P., Newby, T., Ishigooka, Y., Furuya, J. 2014. Historical changes in global yields:major cereal and legume crops from 1982 to 2006. Global Ecol. Biogeogr. 23. 346–357. https://doi.org/10.1111/geb.12120

Intergovernmental Panel on Climate Change (IPCC). 2001. Third Assessment Report - Climate Change 2001. (Houghton J.T., et al., eds.), Cambridge Univ. Press, Cambridge, UK & New York, https://www.ipcc.ch

Intergovernmental Panel on Climate Change (IPCC). 2007. Climate change 2007: Synthesis Report. In: Core Writing Team, Pachauri, R.K., Reisinger, A. (Eds.), Contribution of Working Groups 1, 2 and 3 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPPC, Geneva, Switzerland.

Intergovernmental Panel on Climate Change (IPCC). 2007a. Technical summary. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change: the physical science basis. Contribution of Working Group 1 to the Forth Assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge.

Intergovernmental Panel on Climate Change (IPCC). 2007b. Fourth Assessment Report. Working I Report The Physical Science Basis. Cambridge University Press, Cambridge.

(Intergovernmental Panel on Climate Change (IPCC). 2013. Climate change 2013: the physical science basis. In: Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. M. (Eds.), Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p. 1535.) https://doi.org/10.1017/CBO9781107415324

Intergovernmental Panel on Climate Change (IPCC). 2013. Summary for Policymakers. In: Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. M. (Eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Intergovernmental Panel on Climate Change (IPCC). 2014. Fifth Assessment Report, Climate Change 2014: Impacts, Adaptation, and Vulnerability. http://www.ipcc.ch/report/ar5/wg2/.

Jablonski, L. M., Wang, X., Curtis, P. S. 2002. Plant reproduction under elevated CO2 conditions: a meta-analysis of reports on 79 crop and wild species. New Phytol. 156. 9–26. https://doi.org/10.1046/j.1469-8137.2002.00494.x

Jackson, R. B., Sala, O. E., Field, C. B., Mooney, H. A. 1994. CO2 alters water use, carbon gain, and yield for dominant species in a natural grassland. Oecologia. 98. 257–262. https://doi.org/10.1007/BF00324212

Jaggard, K. W., Qi, A., Ober, E. S. 2010. Possible changes to arable crop yields by 2050. – Philos. T. R. Soc. B. 365. 2835–2851. https://doi.org/10.1098/rstb.2010.0153

Jones, H. G. 1983. Plants and microclimate. Cambridge University Press. Cambridge LondonNew York-New Rochelle-Melbourne-Sydney.

Jones, P., Allen, L. H. Jr., Jones, J. W. 1985. Response of soybean canopy photosynthesis and transpiration to whole-day temperature changes in different CO2 environments. - Agronomy Journal. 77. 242–249. https://doi.org/10.2134/agronj1985.00021962007700020016x

Jones, P. D., Wigley, T. M. L. 1990. Global warming trends. – Sci. Am. 263. 84–91. https://doi.org/10.1038/scientificamerican0890-84

Ju, X. T., Kou, C. L., Zhang, F. S., Christie, P. 2006. Nitrogen balance and groundwater nitrate contamination: comparison among three intensive cropping systems on the North China Plain. Environ. Pollut. 143 (1)117–125. https://doi.org/10.1016/j.envpol.2005.11.005

Keeling, C. D., Bacastow, R. B., Carter, A. F., Piper, S. C., Whorf, T. P., Heimann, M., Mook, W. G., Roeloffzen, H. 1989. A three-dimensional model of atmospheric CO2 transport based on observed winds. I. Analysis of observational data. - In: Aspects of Climate Variability in Pacific and the Western Americas. Eds. D. H. Peterson. Geophys. Monogr. 55. 165–235. https://doi.org/10.1029/GM055p0165

Kerr, R. A. 1997. Climate change: greenhouse forecasting still cloudy. – Science. 276. 1040. https://doi.org/10.1126/science.276.5315.1040

Kim, S. Y., Lee, C. H., Gutierrez, J., Kim, P. J. 2013. Contribution of winter cover crop amendments on global warming potential in rice paddy soil during cultivation. Plant and Soil. 366 (1–2) 273–286. https://doi.org/10.1007/s11104-012-1403-4

Kimball, B. 2005. Theory and performance of an infrared heater for ecosystem warming. Global Change Biol. 11. 2041–2056. https://doi.org/10.1111/j.1365-2486.2005.1028.x

Kimball, B. A. 1983a. Carbon Dioxide and Agricultural Yield. An Assemblage and Analysis of 430 Prior Observations, Agronomy Journal. 75. 1211–1235. https://doi.org/10.2134/agronj1983.00021962007500050014x

Kimball, B. A. 1983b. Carbon Dioxide and Agricultural Yield. An Assemblage and Analysis of 770 Prior Observations, WCL Rep. 14, U. S. Water Conservation Laboratory, Phoenix, AZ, p. 71.

Kimball, B. A. 1986. Influence of elevated CO2 on crop yield. - In: Enoch, H. Z -Kimball, B. A. (Eds.). Carbon dioxide enrichment of greenhouse crops II: physiology, yield and economics. Boca Raton: CRC. 105–115.

Kimball, B. A. 2011. Comment on the comment by Amthor et al. on "Appropriate experimental ecosystem warming methods" by Aronson and McNulty. Agricult Forest Meteorol. 151. 420–424. https://doi.org/10.1016/j.agrformet.2010.11.013

Kimball, B. A., Mauney, J. R., Nakayama, F. S., Idso, S. B. 1993. Effects of increasing atmospheric CO2 on vegetation. In CO2 and Biosphere: Advances in Vegetation Science., Rozema, J. H., Lambers, H., Van Den Geijn, S. C., Cambridge, M. L. (eds). Kluwer Academic Publication: Dordrecht. 4. 65–75. https://doi.org/10.1007/978-94-011-1797-5_5

Kimball, B. A., Idso, S. B. 1983. Increasing atmospheric CO2: effects on crop yield, water use and climate. - Agriculture and Water Management. 7. 55–72. https://doi.org/10.1016/0378-3774(83)90075-6

Kimball, B. A., Kobayashi, K., Bindi, M. 2002. Responses of agricultural crops to free-air CO2 enrichment. - Adv. Agron. 77. 293–368. https://doi.org/10.1016/S0065-2113(02)77017-X

Kimball, B. A., Pinter, P. J., Garcia, R. L., LaMorte, R. L., Wall. G. W., Hunsaker, D. J., Wechsung, G., Wechsung, F., Kartschall, T. H. 1995. Productivity and water use of wheat under free-air CO2 enrichment. - Global Change and Biology, 1 (6) 429–442. https://doi.org/10.1111/j.1365-2486.1995.tb00041.x

Klimov, S. V., Dubinina, I. M., Burakhanova, E. A. 2004. CO2 Exchange as Related to Sugar Accumulation and Invertase Activity during Winter Wheat Cold Hardening, Dokl. Akad. Nauk. 398 (1) 135–138. https://doi.org/10.1023/B:DOBS.0000046661.22088.2c

Knox, J., Hess, T., Daccache, A., Wheeler, T. 2012. Climate change impacts on crop productivity in Africa and South Asia. Environmental Research Letters 7. 034032. https://doi.org/10.1088/1748-9326/7/3/034032

Knox, R. S. 1999. Physical aspects of the greenhouse effect and global warming, Am. J. Phys. 67. 1227–1238. https://doi.org/10.1119/1.19109

Kotera, A., Nguyen, K. D., Sakamoto, T., Iizumi, T., Yokozawa, M. 2014. A modeling approach for assessing rice cropping cycle affected by flooding, salinity intrusion, and monsoon rains in the Mekong Delta, Vietnam. Paddy Water Environ. 12. 343–354. https://doi.org/10.1007/s10333-013-0386-y

Kreye, C., Dittert, K., Zheng, X., Zhang X., Lin, S., Tao, H. 2007. Fluxes of methane and nitrous oxide in water-saving rice production in north China. Nutr Cycl Agroecosyst. 77. 293–304. https://doi.org/10.1007/s10705-006-9068-0

Legave, J. M., Blanke, M., Christen, D., Giovannini, D., Mathieu, V., Oger, R. 2013. A comprehensive overview of the spatial and temporal variability of apple bud dormancy release and blooming phenology in Western Europe. Int. J. Biometeorol. 57 (2) 317–331. https://doi.org/10.1007/s00484-012-0551-9

Legave, J. M., Farrera, I., Almeras, T., Calleja, M. 2008. Selecting models of apple flowering time and understanding how global warming has had an impact on this trait. J. Hortic. Sci. Biotechnol. 83 (1) 76–84. https://doi.org/10.1080/14620316.2008.11512350

Leijonhufvud, L., Wilson, R., Moberg, A., Söderberg, J., Retsö, D., Söderlind, U. 2010. Five centuries of Stockholm winter/spring temperatures reconstructed from documentary evidence and instrumental observations. Climatic Change. 101. 109–141. https://doi.org/10.1007/s10584-009-9650-y

Liu, S., Teskey, R. O. 1995. Responses of foliar gas exchange to long-term elevated CO2 concentrations in mature loblolly pine trees. – Tree Physiology 15., Heron Publishing Victoria, Canada. 351–359. https://doi.org/10.1093/treephys/15.6.351

Lobell, D. B., Field, C. B. 2007. Environmental Research Letters 2 (7) 014002. https://doi.org/10.1088/1748-9326/2/1/014002

Lobell, D. B., Schlenker, W., Costa-Roberts, J. 2011. Climate trends and global crop production since 1980. Science. 333. 616–620. https://doi.org/10.1126/science.1204531

Long, S. P. 1991. Modification of the response of photosynthesis productivity to rising temperature by atmospheric CO2 concentrations has it importance been underestimates? Plant, Cell and Environment. 14. 729–739. https://doi.org/10.1111/j.1365-3040.1991.tb01439.x

Lu, P., Yu, Q., Liu, J., Lee, X. 2006. Advance of tree-flowering dates in response to urban climate change. Agric. For. Meterol. 138. 120–131. https://doi.org/10.1016/j.agrformet.2006.04.002

Maggiotto, S. R., Webb, J. A., Waggner-Riddle, C., Thurtell, G. W. 2000. Nitrous and nitrogen oxide emissions from turfgrass receiving different forms of nitrogen fertilizer. J. Environ. Qual. 29. 621–630. https://doi.org/10.2134/jeq2000.00472425002900020033x

Maxwel, D., Fitzpatrick, M. 2012. The 2011 Somalia famine: context, causes, and complications. Global Food Secur. 1. 5–12. https://doi.org/10.1016/j.gfs.2012.07.002

Melillo, J. M. 1999. Climate change: warm, warm on the range. Science. 283. 183–184. https://doi.org/10.1126/science.283.5399.183

Metz, B., Davidson, O. R., Bosch, P. R., Dave, R., Meyer, L. A. 2007. IPCC: Fourth Assessment Report: Climate Change 2007 (AR4). Cambridge, UK and New York. pp. 1075.

Miller-Rushing, A.J., Katsuki, T., Primack, R.B., Ishii, Y., Lee, S.D., Higuchi, H. 2007. Impact of global warming on a group of related species and their hybrids: Cherry tree (Rosaceae) flowering at MT. Takao, Japan. Am. J. Bot. 94 (9) 1470–1478. https://doi.org/10.3732/ajb.94.9.1470

Miklos, E., Pongracz, R., Batholy, J. 2010. Analysis of expected regional climate change in the Carpathian Basin using ENSEMBLES model simulations. EMS Annual Meeting Abstracts Vol. 7. EMS2010-75.

Mitchell, T. D., Jones, P. D. 2005. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. - Int. J. Climatol. 25. 693–712. https://doi.org/10.1002/joc.1181

Mohammed, A. R., Tarpley, L. 2011. Effects of Night Temperature, Spikelet Position and Salicylic Acid on Yield and Yield-Related Parameters of Rice (Oryza sativa L.) Plants. J Agron Crop Sci. 197. 40–49. https://doi.org/10.1111/j.1439-037X.2010.00439.x

Mohammed, A., Tarpley, L. 2009. High nighttime temperatures affect rice productivity through altered pollen germination and spikelet fertility. Agricult Forest Meteorol. 149. 999–1008. https://doi.org/10.1016/j.agrformet.2008.12.003

Morison, J. I. I., Gifford, R. M. 1983. Stomatal sensitivity to carbon dioxide and humidity. Plant physics. 71. 789–796. https://doi.org/10.1104/pp.71.4.789

Mosier, A., Kroeze, C. 1999. Contribution of Agroecosystems to the Global Atmospheric N2O Budget. https://doi.org/10.1016/S1465-9972(00)00039-8

Mosier, A., Kroeze, C., Nevison, C., Oenema, O., Seitzinger, S., Van Cleemput, O. 1998b. Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle. Nutr. Cycl. Agroecosyst. 52 (2–3) 225–248. https://doi.org/10.1023/A:1009740530221

Mosier, A. R., Duxbury, J. M., Freney, J. R., Heinemeyer, O., Minami, K., Johnson, D. E. 1998a. Mitigating agricultural emissions of methane. Clim. Change. 40 (1) 39–80. https://doi.org/10.1023/A:1005338731269

Myhre, G., Shindell, D., Bréon, F. M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J. F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., Zhang, H. 2013. Anthropogenic and natural radiative forcing. In: Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. M. (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, New York, NY, USA, pp. 659–740. https://doi.org/10.1017/CBO9781107415324.018

NASA. 2010. GISS Surface Temperature Analysis (GISTEMP). http://data. giss.nasa.gov/gistemp/. Date 06/07/2016

Nishimura, S., Sawamoto, T., Akiyama, H., Sudo, S., Yagi, K. 2004. Methane and nitrous oxide emissions from a paddy field with Japanese conventional water management and fertilizer application. Glob Biogeochem Cy 18. GB2017. https://doi.org/10.1029/2003GB002207

Nouchi, I., Mariko, S., Aoki, K. 1990. Mechanism of methane transport from the rhizosphere to the atmosphere through rice plants. Plant Physiol. 94. 59–66. https://doi.org/10.1104/pp.94.1.59

Oke, T. R. 1987. Boundary layer climates. London: Routledge.

Oke, T. R., Johnson, G. T., Steyn, D. G., Watson, I. D. 1991. Simulation of surface urban heat islands under ideal conditions at night, Part 2: Diagnosis of causation. Boundary-Layer Meteorology, 56. 339–358. https://doi.org/10.1007/BF00119211

Onorato, P., Mascheretti, P., De Ambrosis, A. 2011. Home made model to study greenhouse effect and global warming, Eur. J. Phys. 32. 363–376. https://doi.org/10.1088/0143-0807/32/2/009

Orlandi, F., Garcia-Mozo, H., Galán, C., Romano, B., Diaz de la Guardia, C., Ruiz, L., Trigo, M. M., Dominguez-Vilches, E., Fornaciari, M. 2009. Olive flowering trends in a large Mediterranean area (Italy and Spain). Int. J. Biometeorol. https://doi.org/10.1007/s00484-009-0264-x

Osborne, C. P., Chuine, I., Viner, D., Woodward, F. I. 2000. Olive phenology as a sensitive indicator of future climatic warming in the Mediterranean. Plant Cell Environ. 23. 701–710. https://doi.org/10.1046/j.1365-3040.2000.00584.x

Otsenki ekologi-cheskikh i sotsial'no-ekonomicheskikh posledstvii izmeneniya klimata. 1992. Evaluation of Ecological, Social, and Economical Consequences of Climate Changes, St. Petersburg: Gidrometeoizdat, p. 250.

Ozbayrak, O., Uyulgan, M., Alpat, S., Alpat, S. K., Kartal, M. 2011. A research on high school students knowledge related to global warming. Buca Egitim Fakultesi Dergisi. 29. 58–67.

Pataki, D. E., Ellswoth, D. S., Evans, R. D., Gonzalez-Meler, M., King, J., Leavitt, S. W., Lin, G., Matamala, R., Pendall, E., Siegwolf, R., Van Kessel, C., Ehleringer, J. R. (2003): Tracing Changes in Ecosystem Function under Elevated Carbon Dioxide Conditions. – BioScience,53 (9) 805–818. https://doi.org/10.1641/0006-3568(2003)053[0805:TCIEFU]2.0.CO;2

Paustian, K., Babcock, B., Hatfield, J., Lal, R., McCarl, B. A., McLaughlin, S., Mosier, A., Rice, C., Robertson, G., Rosenberg, N., Rosenzweig, C., Schlesinger, W., Zilberman, D. 2004. Agricultural Mitigation of Greenhouse Gases: Science and Policy Options. CAST (Council on Agricultural Science and Technology) Report, 141.

Perrow, C. 2010. Why we disagree about climate change: understanding controversy, inaction, and opportunity. - Contemp. Sociol. 39. 46–47. https://doi.org/10.1177/0094306109356659v

Pieczka, I. 2012. Analysis of climate change scenarios for the Carpathian Basin based on numerical simulation: theses of the PhD dissertation. eötvös loránd university department of meteorology.

Pitman, A. J., Perkins, S. E. 2008. Regional projections of future seasonal and annual changes in rainfall and temperature over Australia based on skill-selected AR4 models. Earth Interact. 12. 1–50. https://doi.org/10.1175/2008EI260.1

Pope, K. S., Dose, V., Silva, D. D., Brown, P. H., Leslie, C. A., Dejong, T. M. (2013): Detecting nonlinear response of spring phenology to climate change by Bayesian analysis. Global Change Biol. 19 (5) 518–1525, https://doi.org/10.1111/gcb.12130

Porter, H. 1992. Interspecific Variation in the Growth Response of Plants to an Elevated Ambient CO2 Concentration. Vegetatio. 104–105. 77–97. https://doi.org/10.1007/BF00048146

Prasad, P., Pisipati, S., Ristic, Z., Bukovnik, U., Fritz, A. 2008. Impact of Nighttime Temperature on Physiology and Growth of Spring Wheat. Crop Sci. 48. 2372–2380. https://doi.org/10.2135/cropsci2007.12.0717

Prieto, P., Penuelas, J., Llusia, J., Asensio, D., Estiarte, M. 2009. Effects of long-term experimental night-time warming and drought on photosynthesis, Fv/ Fm and stomatal conductance in the dominant species of a Mediterranean shrubland. Acta Physiologiae Plantarum. 31. 729–739. https://doi.org/10.1007/s11738-009-0285-4

Pusatjapong, W., Kerdchoechuen, O., Towprayoon, S. 2003. Glucose, fructose, and sucrose accumulation in root and root exudates of rice cv. Supandari 1. KMUTT Res Develop. J. 26 (3) 339–350.

Rivera, P. C., Khan, T. M. A. 2012. Discovery of the major mechanism of global warming and climate change. – J. Basic Appl. Sci. 8. 59–73. https://doi.org/10.6000/1927-5129.2012.08.01.29

Roaf, S., Crichton, D., Nicol, F. 2005. Adapting Buildings and Cities for Climate Change, 21st Century Survival Guide. Elsevier, London. pp. 385. https://doi.org/10.4324/9780080454733

Robertson, G. P., Grace, P. R. 2004. Greenhouse gas fluxes in tropical and temperate agriculture: the need for a full-cost accounting of global warming potentials. In: Tropical Agriculture in Transition-opportunities for Mitigating Greenhouse Gas Emissions? Springer, Netherlands. pp. 51–63. https://doi.org/10.1007/978-94-017-3604-6_3

Robertson, G. P., Paul, E. A., Harwood, R. R. 2000. Greenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere. Science. 289. 1922–1925. https://doi.org/10.1126/science.289.5486.1922

Rogers, H. H., Dahlman, R. C. 1993. Crop Response to CO2 Enrichment. Vegetatio. 104–105., 117–131. https://doi.org/10.1007/BF00048148

Roos, J., Hopkins, R., Kvarnheden, A., Dixelius, C. 2011. The impact of global warming on plant diseases and insect vectors in Sweden. European Journal of Plant Pathology. 129 (1) 9–19. https://doi.org/10.1007/s10658-010-9692-z

Sage, R. F., Christin, P. A., Edwards, E. J. 2011. The C4 plant lineages of planet earth. J. Exp. Bot. 62. 3155–3169. https://doi.org/10.1093/jxb/err048

Sakamoto, T., Nguyen, N. V., Ohno, H., Ishitsuka, N., Yokozawa, M. 2006. Spatiotemporal distribution of rice phenology and cropping systems in the Mekong Delta with special reference to the seasonal water flow of the Mekong and Bassac rivers. Remote Sens. Environ. 100. 1–16. https://doi.org/10.1016/j.rse.2005.09.007

Schwartz, M. D., Ahas, R., Aasa, A. 2006. Onset of spring starting earlier across the Northern Hemisphere. Global Change Biol. 12. 343–351. https://doi.org/10.1111/j.1365-2486.2005.01097.x

Soon, W., Baliunas, S. 2003. Proxy climatic and environmental changes of the past 1000 years. – Climate Res. 23. 89–110. https://doi.org/10.3354/cr023089

Specht, E., Redemann, T., Lorenz, N. 2016. International Journal of Thermal Sciences Simplified mathematical model for calculating global warming through anthropogenic CO2. International Journal of Thermal Sciences. 102. 1–8. https://doi.org/10.1016/j.ijthermalsci.2015.10.039

Springer, C. J., Ward, J. K. 2007. Flowering time and elevated atmospheric CO2. New Phytol 176. 243–255. https://doi.org/10.1111/j.1469-8137.2007.02196.x

Streck, N. A. 2005. Climate change and agroecosystems: the effect of elevated atmospheric CO2 and temperature on crop growth, development and yield. - Ciencia Rural, Santa Maria, Brasil.35 (3) 730–740. https://doi.org/10.1590/S0103-84782005000300041

Swedish Meteorological and Hydrological Institute (SMHI). 2010. http://www. smhi.se. (Date 06/07/2016)

Thompson, L. G., Yao, T., Mosley-Thompson, E., Davis, M. E., Henderson, K. A., Lin, P. N. 2000. A high-resolution millennial record of the South Asian Monsoon from Himalayan ice cores. Science. 289. 1916–1919. https://doi.org/10.1126/science.289.5486.1916

Tian, X., Luo, H., Zhou, H. 2009. Research on heat stress on rice in China: progress and prospect. Chin Agric Sci Bull. 25. 166–168.

Tubiello, F. N., Soussana, J. F., Howden, S. M. 2007. Crop and pasture response to climate Change. – P. Natl. Acad. Sci. USA 104. 19686–19690. https://doi.org/10.1073/pnas.0701728104

Van den Geijn, S. C., Goudriaan, J. 1996. The effects of elevated CO2 and temperature change on transpiration and crop water use. In Global Climate change and Agricultural production, Bazzaz F, Sombroek W (eds). FAO and John Wiley and Sons: New York: 101–122.

Van Laar, H. H., Kremer, D., De Vit, C. T. 1977. Maize. In Crop Photosynthesis: Methods and Compilation of Data Obtained with a Mobile Field Equipment. – Agric. Res. Rep. 865. Pudoc, Wageningen, 12–22.

Vivian, Gornitz 2005. Natural Hazards. In Encyclopedia of Coastal Science, by Maurice L. Schwartz. Dordrecht, The Netherlands. Springer, 678–684. https://doi.org/10.1007/1-4020-3880-1_221

Wall, G. W., Kimball, B. A., White, J. W., Ottman, M. J. 2011. Gas exchange and water relations of spring wheat under full-season infrared warming. Global Change Biol. 17. 2113–2133. https://doi.org/10.1111/j.1365-2486.2011.02399.x

Wand, S. J. E., Midgley, G. F., Jones, M. H., Curtis, P. S. 1999. Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: a meta-analytic test ofcurrent theories and perceptions. Glob Change Biol. 5. 723–741. https://doi.org/10.1046/j.1365-2486.1999.00265.x

Wang, J. Y., Chen, Z. Z., Ma, Y. C., Sun, L. Y., Xiong, Z. Q., Huang, Q. W., Sheng, Q. R. 2013. Methane and nitrous oxide emissions as affected by organic-inorganic mixed fertilizer from a rice paddy in southeast China. J. Soils Sediments. 13. 1408–1417. https://doi.org/10.1007/s11368-013-0731-1

Wang, T., Ottlé, C., Peng, S., Janssens, I. A., Lin, X., Poulter, B., Yue, C., Ciais, P. 2014. The influence of local spring temperature variance on temperature sensitivity of spring phenology. Glob. Change Biol. 20. 1473–1480. https://doi.org/10.1111/gcb.12509

Wassmann, R., Dobermann, A. 2006. Greenhouse gas emissions from rice fields: what do we know and where should we head for? The 2nd Joint International Conference on Sustainable Energy and Environment (SEE 2006), November, Bangkok, Thailand, pp. 21–23.

Yuan, C. H., Tang, J. P. 2007. Regional Climatic response of Jiangsu to global warming. J Nanjing Univ. In Chinese with English abstract. 43. 655–669.

Zomer, R. J., Xu, J. C., Wang, M. C., Trabucco, A., Li, Z. Q. 2015. Projected impact of climate change on the effectiveness of the existing protected area network for biodiversity conservation within Yunnan Province, China. Biol. Conserv. 184. 335–345. https://doi.org/10.1016/j.biocon.2015.01.031

Downloads

Published

2016-12-07

Issue

Section

Articles

How to Cite

Cong, D. V. (2016). Climate change and its effect on some physiological processes of the agricultural plants : A literature review . GEORGIKON FOR AGRICULTURE, 20(2), 38-64. https://journal.uni-mate.hu/index.php/gfa/article/view/6675

Similar Articles

1-10 of 131

You may also start an advanced similarity search for this article.