Naturally Occurring Aspergillus Species and their Mycotoxigenic Potential from Hungarian Sorghum (Sorghum Bicolor L. Moench) Kernels

Authors

  • Barbara Katalin Szabó Hungarian University of Agriculture and Life Sciences, Institute of Plant Protection, Department of Integrated Plant Protection
  • Katalin Körösi Hungarian University of Agriculture and Life Sciences, Institute of Plant Protection, Department of Integrated Plant Protection https://orcid.org/0000-0003-0220-3103

Keywords:

aflatoxin, sorghum, aflatoxigenic genes, molecular identification, toxigenic fungi

Abstract

This study examined and identified the occurring Aspergillus spp. from sorghum (Sorghum bicolor L. Moench) kernels. We examined the internal infections of sorghum grains in PPA medium. During our experiments, we also used molecular methods to identify Aspergillus species and their genes, which promote aflatoxin production. This study identified two different Aspergillus species: A. flavus and A. oryzae. During identifying the genes, we detected that some of our A. flavus species could be aflatoxin-producing isolates.

Author Biographies

  • Barbara Katalin Szabó, Hungarian University of Agriculture and Life Sciences, Institute of Plant Protection, Department of Integrated Plant Protection

    correspondence
    szabo.barbara.katalin@phd.uni-mate.hu

  • Katalin Körösi, Hungarian University of Agriculture and Life Sciences, Institute of Plant Protection, Department of Integrated Plant Protection

    korosi.katalin.orsolya@uni-mate.hu

References

Bakari, H., Djomdi, Ruben, Z. F., Roger, D. D., Cedric, D., Guillaume, P., Pascal, D., Philippe, M. and Gwendoline, C. 2023. Sorghum (Sorghum bicolor L. Moench) and its main parts (by-products) as promising sustainable sources of value-added ingredients. Waste and Biomass Valorization. 14 1023–1044. https://doi.org/10.1007/s12649-022-01992-7

Baranyi, N., Despot, D. J., Palágyi, A., Kiss, N., Kocsubé, S., Szekeres, A. and Varga, J. 2015. Identification of Aspergillus species in Central Europe able to produce G-type aflatoxins. Acta Biologica Hungarica. 66 339–347. https://doi.org/10.1556/018.66.2015.3.9

Chang, P. K., and Ehrlich, K. C. 2010. What does genetic diversity of Aspergillus flavus tell us about Aspergillus oryzae? International journal of food microbiology. 138 (3) 189–199. https://doi.org/10.1016/j.ijfoodmicro.2010.01.033

Chikara, N., Abdulahi, B., Munezero, C., Kaur, R., Singh, G. and Panghal, A. 2019. Exploring the nutritional and phytochemical potential of sorghum in food processing for food security, Nutrition & Food Science. 49 (2) 318–332. https://doi.org/10.1108/NFS-05-2018-0149

Degola, F., Berni, E., Dall’Asta, C., Spotti, E., Marchelli, R., Ferrero, I. and Restivo, F.M. 2007. A multiplex RT-PCR approach to detect aflatoxigenic strains of Aspergillus flavus. Journal of Applied Microbiology. 103 (2) 409–417. https://doi.org/10.1111/j.1365-2672.2006.03256.x

Dobolyi, C. S., Sebők, F., Varga, J., Kocsubé, S., Szigeti, G., Baranyi, N. and Kukolya, J. 2013. Occurrence of aflatoxin producing Aspergillus flavus isolates in maize kernel in Hungary. Acta Alimentaria. 42 (3) 451–459. https://doi.org/10.1556/aalim.42.2013.3.18

Frisvad, J., Hubka, V., Ezekiel, C., Hong, S.-B., Nováková, A., Chen, A., Arzanlou, M., Larsen, T., Sklenář, F., and Mahakarnchanakul, W. 2018. Taxonomy of Aspergillus section Flavi and their production of aflatoxins, ochratoxins and other mycotoxins. Stud. Mycol. 93 1–63. https://doi.org/10.1016/j.simyco.2018.06.001

Gallo, A., Stea, G., Battilani, P. F., Logrieco, A. and Perrone, G. 2012. Molecular characterization of an Aspergillus flavus population isolated from maize during the first outbreak of aflatoxin contamination in Italy. Phytopathololgia Mediterranea. 51 (1) 198–206.

Meena, K., Visarada, K. B. R. S. and Meena, D. K. 2022. Sorghum bicolor L. Moench a multifarious crop-fodder to therapeutic potential and biotechnological applications: A future food for the millenium. Future Foods. 6 1–14. https://doi.org/10.1016/j.fufo.2022.100188

Palencia, E. R., Hinto, D. M. and Bacon, C. W. 2010. The black Aspergillus species of maize and peanuts and their potential for mycotoxin production. Toxins. 2 (4) 399–416. https://doi.org/10.3390/toxins2040399

Riba, A., Bouras, N., Mokrane, S., Mathieu, F., Lebrihi, A., and Sabaou, N. 2010. Aspergillus section Flavi and aflatoxins in Algerian wheat and derived products. Food and Chemical Toxicology. 48 (10) 2772–2777. https://doi.org/10.1016/j.fct.2010.07.005

Safian N., Naderi M. R., Torabi M., Soleymani A. and Salemi H. R. 2022. Corn (Zea mays L.) and sorghum (Sorghum bicolor (L.) Moench) yield and nutritional quality affected by drought stress. Biocatalysis and Agricultural Biotechnology. 45 102486. https://doi.org/10.1016/j.bcab.2022.102486

Sebők, F., Dobolyi, C., Zágoni, D., Risa, A., Krifaton, C., Hartman, M. and Kriszt, B. 2016. Aflatoxigenic Aspergillus flavus and Aspergillus parasiticus strains in Hungarian maize fields. Acta Microbiologica et Immunologica Hungarica. 63 (4) 491–502. https://doi.org/10.1556/030.63.2016.012

Tóth, B., Török, O., Kótai, É., Varga, M., Toldiné Tóth, É., Pálfi, X. and Mesterházy, Á. 2012. Role of Aspergilli and Penicillia in mycotoxin contamination of maize in Hungary. Acta Agronomica Hungarica. 60 (2) 143–149. https://doi.org/10.1556/aagr.60.2012.2.5

Xiong, Y., Zhang, P., Warner, R. D., and Fang, Z. 2019. Sorghum grain: From Genotype, Nutrition, and Phenolic Profile to Its Health Benefits and Food Applications. Food Science and Food Safety. 18 2025–2046. https://doi.org/10.1111/1541-4337.12506

Downloads

Published

2024-02-29