The Effects of Tillage Practices on Water Management of Soybean (Glycine max L.)

Authors

  • Boglárka Bozóki Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1., 2100 Gödöllő, Hungary, e-mail: Bozoki.Boglarka@phd.uni-mate.hu https://orcid.org/0000-0003-2548-1042
  • Gergő Péter Kovács Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1., 2100 Gödöllő, Hungary, e-mail: Kovacs.Gergo.Peter@uni-mate.hu https://orcid.org/0000-0001-9938-577X
  • Márta Birkás Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1., 2100 Gödöllő, Hungary, e-mail: Birkas.Marta@uni-mate.hu
  • Zoltán Kende Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1., 2100 Gödöllő, Hungary, e-mail: Kende.Zoltan@uni-mate.hu https://orcid.org/0000-0001-5515-1314
  • Csaba Gyuricza Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1., 2100 Gödöllő, Hungary, e-mail: Gyuricza.Csaba@uni-mate.hu

DOI:

https://doi.org/10.18380/SZIE.COLUM.2022.9.2.145

Keywords:

Glycine max L., soybean, water management, soil tillage, climate change

Abstract

Continuous world population growth imposes the need to produce higher-quality food. Due to the high content of valuable protein and high concentration of carbohydrates, vitamins and minerals, soybean (Glycine max L.) is one of the most essential leguminous and oilseed crop that contributes to human alimentation and animal nutrition. This study assesses the possible impacts of soybean seedling development and seeds’ quality indicators correlate to water supply aboveground and in the root zone. The level of water management is crucial in and out of the growing season; however, the increase in temperature may adversely affect climatic conditions. As a consequence of water contained in soil, leguminous crops can improve soil texture and the capacity of minerals if admissible water is available for the crop. Soil tillage is cardinal for agricultural water management; by practising proper tillage continuously, soil properties can increase, and exposedness can decrease in the long term.

Author Biography

  • Boglárka Bozóki, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1., 2100 Gödöllő, Hungary, e-mail: Bozoki.Boglarka@phd.uni-mate.hu

    PhD student at MATE
    corresponding author

References

Aliverdi, A., Karami, S., & Hamami, H. (2021). The Effect of Irrigation with Magnetized Water on the Symbiosis Between Soybean and Rhizobium. Journal of Water and Soil 35(1), 95-106. doi: https://doi.org/10.22067/jsw.2021.14972.0

Aminah, A., Djufry, F., Rauf, A. W., Saida, S., Palad, M. S., & Salim, S. (2021). Effectiveness of Irrigation Methods and Time of Providing Water in Maintaining Soil Classification for Increasing Soybean Production. AGRIVITA Journal of Agricultural Science 43(3), 627-643. doi: https://doi.org/10.17503/agrivita.v43i3.2975

Anda, A., Soós, G., Menyhárt, L., Kucserka, T., & Simon, B. (2020). Yield features of two soybean varieties under different water supplies and field conditions. Field Crops Research 245(1), 107673. doi: https://doi.org/10.1016/j.fcr.2019.107673

Arnell, N. W., van Vuuren, D. P., & Isaac, M. (2011). The implications of climate policy for the impacts of climate change on global water resources. Global Environmental Change 21(2), 592-603. doi: https://doi.org/10.1016/j.gloenvcha.2011.01.015

Bastidas, A. M., Setiyono, T. D., Dobermann, A., Cassman, K. G., Elmore, R. W., Graef, G. L., & Specht, J. E. (2008). Soybean sowing date: The vegetative, reproductive, and agronomic impacts. Crop Science 48(2), 727-740. doi: https://doi.org/10.2135/cropsci2006.05.0292

Bending, G. D., Turner, M. K., & Jones, J. E. (2002). Interactions between crop residue and soil organic matter quality and the functional diversity of soil microbial communities. Soil Biology and Biochemistry 34(8), 1073-1082. doi: https://doi.org/10.1016/S0038-0717(02)00040-8

Berg, G., Eberl, L., & Hartmann, A. (2005). The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environmental Microbiology 7(11), 1673-1685. doi: https://doi.org/10.1111/j.1462-2920.2005.00891.x

Borowska, M., & Prusiński, J. (2021). Effect of soybean cultivars sowing dates on seed yield and its correlation with yield parameters. Plant, Soil and Environment 67(6), 360-366. doi: https://doi.org/10.17221/73/2021-pse

Boutraa, T. (2010). Improvement of water use efficiency in irrigated agriculture: a review. Journal of Agronomy 9(1), 1-8.

Brezinšcˇak, L., & Bogunović, I. (2021). Tillage and straw management impact on soil struc- ture, compaction and soybean yield on fluvisol. Journal of Central European Agriculture 22(1), 133-145. doi: https://doi.org/10.5513/jcea01/22.1.2975

Chen, G., Zhu, H., & Zhang, Y. (2003). Soil microbial activities and carbon and nitrogen fixation. Research in Microbiology 154(6), 393-398. doi: https://doi.org/10.1016/S0923-2508(03)00082-2

Comlekcioglu, N., & Simsek, M. (2013). Effects of deficit irrigation on yield and yield components of vegetable soybean [Glycine max L. (Merr.)] in semi-arid conditions. African Journal of Biotechnology 10(33), 6227-6234. doi: https://doi.org/10.4314/ajb.v10i33.

Critchley, W., Siegert, K., & Chapman, C. (1991). Water and Soil Requirements. In A Manual for the Design and Construction of Water Harvesting Schemes for Plant Production. Rome, Italy: Food and Agriculture Organization (FAO). Retrieved from https://www.fao.org/3/u3160e/u3160e04.htm

da Silva, E. H., Gonçalves, A. O., Pereira, R. A., Fattori Júnior, I. M., Sobenko, L. R., & Marin, F. R. (2019). Soybean irrigation requirements and canopy-atmosphere coupling in Southern Brazil. Agricultural Water Management 218(1), 1-7. doi: https://doi.org/10.1016/j.agwat.2019.03.003

Daryanto, S., Wang, L., & Jacinthe, P.-A. (2015). Global Synthesis of Drought Effects on Food Legume Production. PLOS ONE 10(6), e0127401. doi: https://doi.org/10.1371/journal.pone.0127401

Davies, W. J., & Bennett, M. J. (2015). Achieving more crop per drop. Nature Plants 1(8), 15118. doi: https://doi.org/10.1038/nplants.2015.118

Desclaux, D., & Roumet, P. (1996). Impact of drought stress on the phenology of two soybean (glycine max l. merr) cultivars. Field Crops Research 46(1), 61-70. doi: https://doi.org/10.1016/0378-4290(95)00086-0

Dominy, C., & Haynes, R. (2002). Influence of agricultural land management on organic matter content, microbial activity and aggregate stability in the profiles of two Oxisols. Biology and Fertility of Soils 36(4), 298-305. doi: https://doi.org/10.1007/s00374-002-0542-9

Dong, S., Wang, W., Jiang, Y., Ma, Z., Yan, C., Liu, L., & Cui, G. (2019). Antioxidant and proteomic analysis of soybean response to drought during soybean flowering. Ekoloji 28(107), 2041-2052.

Doran, J. W., & Zeiss, M. R. (2000). Soil health and sustainability: managing the biotic component of soil quality. Applied Soil Ecology 15(1), 3-11. doi: https://doi.org/10.1016/S0929-1393(00)00067-6

Doss, B. D., Pearson, R. W., & Rogers, H. T. (1974). Effect of Soil Water Stress at Various Growth Stages on Soybean Yield. Agronomy Journal 66(2), 297-299. doi: https://doi.org/10.2134/agronj1974.00021962006600020032x

Engels, C., Rodrigues, F., Ferreira, A., Inagaki, T., & Nepomuceno, A. (2017). Drought Effects on Soybean Cultivation - A Review. Annual Research & Review in Biology 16(1), 1-13. doi: https://doi.org/10.9734/arrb/2017/35232

Evans, R. G., & Sadler, E. J. (2008). Methods and technologies to improve efficiency of water use. Water Resources Research 44(7), W00E04. doi: https://doi.org/10.1029/2007WR006200

Gosling, S. N., & Arnell, N. W. (2013). A global assessment of the impact of climate change on water scarcity. Climatic Change 134(3), 371-385. doi: https://doi.org/10.1007/s10584-013-0853-x

Itabari, J. K., Kwena, K., Esilaba, A., Kathuku, A., Muhammad, L., Mangale, N., & Kathuli, P. (2011). Land and Water Management Research and Development in Arid and Semi-arid Lands of Kenya. In Innovations as Key to the Green Revolution in Africa (p. 427-438). Dordrecht, the Netherlands: Springer Netherlands. doi: https://doi.org/10.1007/978-90-481-2543-2_44

Jaeger, C. H., Lindow, S. E., Miller, W., Clark, E., & Firestone, M. K. (1999). Mapping of Sugar and Amino Acid Availability in Soil around Roots with Bacterial Sensors of Sucrose and Tryptophan. Applied and Environmental Microbiology 65(6), 2685-2690. doi: https://doi.org/10.1128/aem.65.6.2685-2690.1999

Jain, R. K., Joshi, A., Chaudhary, H. R., Dashora, A., & Khatik, C. L. (2018). Study on genetic variability, heritability and genetic advance in soybean [Glycine max (L.) Merrill]. Legume Research 41(4), 532-536. doi: https://doi.org/10.18805/lr-3874

Jarvis, P. G., & McNaughton, K. (1986). Stomatal control of transpiration: scaling up from leaf to region. In Advances in ecological research (Vol. 15, pp. 1–49). Elsevier.

Jordan, W. R., & Ritchie, J. T. (1971). Influence of Soil Water Stress on Evaporation, Root Absorption, and Internal Water Status of Cotton. Plant Physiology 48(6), 783-788. doi: https://doi.org/10.1104/pp.48.6.783

Karam, F., Masaad, R., Sfeir, T., Mounzer, O., & Rouphael, Y. (2005). Evapotranspiration and seed yield of field grown soybean under deficit irrigation conditions. Agricultural Water Management 75(3), 226-244. doi: https://doi.org/10.1016/j.agwat.2004.12.015

Kolaric, L., Zivanovic, L., Popovic, V., Ikanovic, J., & Srebric, M. (2014). Influence of inter- row spacing and cultivar on the productivity of soybean. Biotehnologija u stocarstvu 30(3), 517-528. doi: https://doi.org/10.2298/bah1403517k

Krauss, M., Berner, A., Perrochet, F., Frei, R., Niggli, U., & Mäder, P. (2020). Enhanced soil quality with reduced tillage and solid manures in organic farming – a synthesis of 15 years. Scientific Reports 10(1), 4403. doi: https://doi.org/10.1038/s41598-020-61320-8

Kumar, A., Kumar, V., Lal, S. K., Jolly, M., & Sachdev, A. (2014). Influence of gamma rays and ethyl methane sulphonate (EMS) on the levels of phytic acid, raffinose family oligosaccharides and antioxidants in soybean seeds of different genotypes. Journal of Plant Biochemistry and Biotechnology 24(2), 204-209. doi: https://doi.org/10.1007/s13562-014-0258-6

Levidow, L., Zaccaria, D., Maia, R., Vivas, E., Todorovic, M., & Scardigno, A. (2014). Improving water-efficient irrigation: Prospects and difficulties of innovative practices. Agricultural Water Management 146(1), 84-94. doi: https://doi.org/10.1016/j.agwat.2014.07.012

Lupwayi, N. Z., Grant, C. A., Soon, Y. K., Clayton, G. W., Bittman, S., Malhi, S. S., & Zebarth, B. J. (2010). Soil microbial community response to controlled-release urea fertilizer under zero tillage and conventional tillage. Applied Soil Ecology 45(3), 254-261. doi: https://doi.org/10.1016/j.apsoil.2010.04.013

Lupwayi, N. Z., Lafond, G. P., Ziadi, N., & Grant, C. A. (2012). Soil microbial response to nitrogen fertilizer and tillage in barley and corn. Soil and Tillage Research 118(1), 139-146. doi: https://doi.org/10.1016/j.still.2011.11.006

Mahmoud, G., Almatboly, M., & Safina, S. (2013). Effect of irrigation intervals and fertiliza- tion systems on soybean seed yield and its quality. Journal of Plant Production 4(7), 1109-1118. doi: https://doi.org/10.21608/jpp.2013.73743

Mancosu, N., Snyder, R., Kyriakakis, G., & Spano, D. (2015). Water Scarcity and Future Challenges for Food Production. Water 7(12), 975-992. doi: https://doi.org/10.3390/w7030975

Minosso, R. R., Sostisso, G. L., & Dranski, J. A. L. (2021). Yield and yield components on soybean cultivation with hydrogel. Revista Científica Rural 23(1), 69-82. doi: https://doi.org/10.30945/rcr-v23i1.3139

Montoya, F., García, C., Pintos, F., & Otero, A. (2017). Effects of irrigation regime on the growth and yield of irrigated soybean in temperate humid climatic conditions. Agricultural Water Management 193(1), 30-45. doi: https://doi.org/10.1016/j.agwat.2017.08.001

Moraru, P. I., & Rusu, T. (2010). Soil tillage conservation and its effect on soil organic matter, water management and carbon sequestration. Journal of Food, Agriculture & Environment 8(3-4), 309-312.

Mousavi-Derazmahalleh, M., Bayer, P. E., Hane, J. K., Valliyodan, B., Nguyen, H. T., Nelson, M. N., . . . Edwards, D. (2019). Adapting legume crops to climate change using genomic approaches. Plant, Cell & Environment 42(1), 6-19. doi: https://doi.org/10.1111/pce.13203

Mozafari, S., Dass, A., Choudhary, A., Raihan, O., & Rajanna, G. (2020). Moisture conser- vation and integrated nutrient management in summer maize: Effects on crop and water productivity, production–and monetary–efficiency in Kandahar, Afghanistan. Indian Journal of Agricultural Sci- ences 90(1), 236-239.

Munkholm, L. J., Heck, R. J., & Deen, B. (2013). Long-term rotation and tillage effects on soil structure and crop yield. Soil and Tillage Research 127(1), 85-91. doi: https://doi.org/10.1016/j.still.2012.02.007

Nannipieri, P., Ascher, J., Ceccherini, M. T., Landi, L., Pietramellara, G., & Renella, G. (2003). Microbial diversity and soil functions. European Journal of Soil Science 54(4), 655-670. doi: https://doi.org/10.1046/j.1351-0754.2003.0556.x

Narolia, R., Ram, B., Singh, P., & Dhakar, R. (2021). Effect of irrigation, residue and nutrient management on growth, yield and nutrient uptake by soybean under soybean-wheat cropping system in south-eastern Rajasthan. Journal of Food Legumes 34(2), 92-98.

Nascimento, M., Finoto, E. L., Sediyama, T., & Cruz, C. D. (2010). Adaptability and stability of soybean in terms of oil and protein content. Crop Breeding and Applied Biotechnology 10(1), 48-54.

Obalum, S. E., Igwe, C. A., Obi, M. E., & Wakatsuki, T. (2011). Water use and grain yield response of rainfed soybean to tillage-mulch practices in southeastern Nigeria. Scientia Agricola 68(5), 554-561. doi: https://doi.org/10.1590/s0103-90162011000500007

Omondi, J., Mungai, N., Ouma, J., & Baijukya, F. (2017). Shoot water content and reference evapotranspiration for determination of crop evapotranspiration. African Crop Science Journal 25(4), 387-403. doi: https://doi.org/10.4314/acsj.v25i4.1

Omondi, J. O., Mungai, N. W., Ouma, J. P., & Baijukya, F. P. (2015). Mitigating mid- season drought effect in soybean (Glycine max L. Merril) in Western Kenya. Legume Research - An International Journal 38(4), 477. doi: https://doi.org/10.5958/0976-0571.2015.00131.9

Osman, K. T. (2018). Management of soil problems. Cham: Springer. doi: https://doi.org/10.1007/978-3-319-75527-4

Oya, T., Nepomuceno, A. L., Neumaier, N., Farias, J. R. B., Tobita, S., & Ito, O. (2004). Drought Tolerance Characteristics of Brazilian Soybean Cultivars: Evaluation and characterization of drought tolerance of various Brazilian soybean cultivars in the field. Plant Production Science 7(2), 129-137. doi: https://doi.org/10.1626/pps.7.129

Parihar, C., Jat, S., Singh, A., Ghosh, A., Rathore, N., Kumar, B., . . . Saveipune, D. (2017). Effects of precision conservation agriculture in a maize-wheat-mungbean rotation on crop yield, water-use and radiation conversion under a semiarid agro-ecosystem. Agricultural Water Manage- ment 192(1), 306-319. doi: https://doi.org/10.1016/j.agwat.2017.07.021

Phillips, S., & Young, H. (1973). No-tillage Farming. Milwaukee, Wisconsin: Reimann Associates, INC.

Rajanna, G., Dass, A., Suman, A., Babu, S., Venkatesh, P., Singh, V., . . . Sudhishri, S. (2022). Co-implementation of tillage, irrigation, and fertilizers in soybean: Impact on crop productivity, soil moisture, and soil microbial dynamics. Field Crops Research 288(1), 108672. doi: https://doi.org/10.1016/j.fcr.2022.108672

Rana, D., Dass, A., Rajanna, G., & Choudhary, A. (2018). Fertilizer Phosphorus Solubility Effects on Indian Mustard–Maize and Wheat–Soybean Cropping Systems Productivity. Agronomy Journal 110(6), 2608-2618. doi: https://doi.org/10.2134/agronj2018.04.0256

Rengel, Z. (2002). Genetic control of root exudation. In Food Security in Nutrient-Stressed Environments: Exploiting Plants’ Genetic Capabilities (p. 215-226). Springer Netherlands. doi: https://doi.org/10.1007/978-94-017-1570-6_24

Rockström, J., Falkenmark, M., Karlberg, L., Hoff, H., Rost, S., & Gerten, D. (2009). Fu- ture water availability for global food production: The potential of green water for increasing re- silience to global change. Water Resources Research 45(7), W00A12. doi: https://doi.org/10.1029/2007WR006767

Sarpe, N. (2010). Soil humidity and production of the genetically-modified soy bean, cul- tivated in the classical and no-tillage system, in the conditions provided by the Danube meadow. Journal of Horticulture, Forestry and Biotechnology 14(3), 111-113.

Sincik, M., Tanju, A., & Metin, Z. (2011). How Growth Dynamics Affect Soybean Development across Cultural Practices. In Soybean - applications and technology. InTech. doi: https://doi.org/10.5772/14290

TerAvest, D., Carpenter-Boggs, L., Thierfelder, C., & Reganold, J. P. (2015). Crop production and soil water management in conservation agriculture, no-till, and conventional tillage systems in Malawi. Agriculture, Ecosystems & Environment 212(1), 285-296. doi: https://doi.org/10.1016/j.agee.2015.07.011

Turan, V., Schröder, P., Bilen, S., Insam, H., & Juárez, M. F.-D. (2019). Co-inoculation effect of Rhizobium and Achillea millefolium L. oil extracts on growth of common bean (Phaseolus vulgaris L.) and soil microbial-chemical properties. Scientific Reports 9(1), 15178. doi: https://doi.org/10.1038/s41598-019-51587-x

Ummenhofer, C. C., & Meehl, G. A. (2017). Extreme weather and climate events with eco- logical relevance: a review. Philosophical Transactions of the Royal Society B: Biological Sciences 372(1723), 20160135. doi: https://doi.org/10.1098/rstb.2016.0135

Vinther, F., Hansen, E., & Olesen, J. (2004). Effects of plant residues on crop performance, N mineralisation and microbial activity including field CO2 and N2O fluxes in unfertilised crop rotations. Nutrient Cycling in Agroecosystems 70(2), 189-199. doi: https://doi.org/10.1023/b:fres.0000048477.56417.46

Wakindiki, I. I., Mochoge, B., & Ben-Hur, M. (2007). Assessment of indigenous soil and water conservation technology for smallholder farms in semi-arid areas in Africa and close spaced trash lines effect on erosion and crop yield. In A. Bationo, B. Waswa, J. Kihara, & J. Kimetu (Eds.), Advances in Integrated Soil Fertility Management in sub-Saharan Africa: Challenges and Opportunities (p. 805-814). Dordrecht: Springer Netherlands. doi: https://doi.org/10.1007/978-1-4020-5760-1_76

Wang, T., Wei, L., Tian, Y., Ma, C., Du, Y., & Tan, Y. (2009). Dynamic changes of soil respi- ration on mulched bed planting under winter wheat and summer maize double cropping integration. J. Agro-Environ. Sci 28(1), 1970–1974.

Werner, B., & Vanneuville, W. (2012). Water resources in Europe in the context of vulnerabil- ity : EEA 2012 state of water assessment. Copenhagen: European Environment Agency, Publications Office. doi: https://doi.org/10.2800/65298

Yang, T., Ding, Y., Zhu, Y., Li, Y., Wang, X., Yang, R., . . . Yang, Y. (2012). Rhizosphere bacteria induced by aluminum-tolerant and aluminum-sensitive soybeans in acid soil. Plant, Soil and Environment 58(6), 262-267. doi: https://doi.org/10.17221/652/2011-pse

Zhang, S., LC, W., Shi, C., Chen, J., Zhou, Q., & Xiong, Y. (2016). Soil respiration in a triple intercropping system under conservation tillage. Plant, Soil and Environment 61(8), 378-384. doi: https://doi.org/10.17221/370/2015-pse

Downloads

Published

2022-12-30

How to Cite

The Effects of Tillage Practices on Water Management of Soybean (Glycine max L.). (2022). COLUMELLA – Journal of Agricultural and Environmental Sciences, 9(2), 145-154. https://doi.org/10.18380/SZIE.COLUM.2022.9.2.145

Similar Articles

71-80 of 99

You may also start an advanced similarity search for this article.