Stochastic Data Envelopment Analysis (DEA) in measuring the efficiency of dairy farms in Hungary

Authors

  • Tímea Gál Coordination Centre for Logistics, Centre of Agricultural and Applied Economics Sciences, University of Debrecen, H-4032 Debrecen, Böszörményi út 138.
  • István Komlósi Institute of Animal Husbandry, Centre of Agricultural and Applied Economics Sciences, University of Debrecen, H-4032 Debrecen, Böszörményi út 138.

Keywords:

stochastic DEA, efficiency, dairy enterprise, risk

Abstract

Dairy enterprise is a very risky activity: the profitability of the enterprise is affected by the fluctuation of feed and animal health products prices from inputs, and by the fluctuation of end-product prices. Under these circumstances it is essential for the cattle breeders, in order to survive, to harness the reserves in management as effectively as possible. In our research we analysed the efficiency and risk of some dairy farms by applying classical Data Envelopment Analysis (DEA) and stochastic DEA models. The choice of this method is justified by the fact that there was not such an available reliable database by which production functions could have been defined, and DEA makes possible to manage simultaneously some inputs and outputs, i.e. complex decision problems. By using DEA, the sources that cause shortfall on the inefficient farms can be identified, analysed and quantified, so the corporate decision support can be supported successfully. A disadvantage of the classical DEA model is that the stochastic factors of farming cannot be treated either on the side of inputs or outputs; therefore their results can be adopted with reservations, especially in agricultural models. It may have been because of that we could meet not so many agricultural applications so far. Considering the price of inputs and outputs as probability variables we have done 1000 simulation runs in our research. As results, it can be stated that at which intervals of the input and output factors can become competitive and the fluctuation of these factors can cause what level of risk at each farm.

Author Biography

  • Tímea Gál, Coordination Centre for Logistics, Centre of Agricultural and Applied Economics Sciences, University of Debrecen, H-4032 Debrecen, Böszörményi út 138.

    corresponding author
    galtimea@agr.unideb.hu

References

Albright, S. C., Winston, W. L. (2007). Management Science Modeling. Revised Third Edition. Thomson, 184–192. p.

Borsi B. (2005). Tudás, technológia és a magyar versenyképesség. Ph.D. értekezés, 26–30. p.

Bunkóczi L., Pitlik L. (1999). A DEA (Data Envelopment Analysis) módszer alkalmazási lehetőségei üzemhatékonyságok mérésére. IA’99, Debrecen, 1999. augusztus 26.

Bruni, M. E., Conforti, D., Beraldi P., Tundis, E. (2009). Probablisticall constrained models for efficiency and dominance. In: Int. J. Production Economics, 117. 1. 219–228. p. https://doi.org/10.1016/j.ijpe.2008.10.011

Charnes, A., Cooper, W., Rhodes, E. (1978). Measuring the efficiency of decision- making units. In: European Journal of Operational Research, 2. 6. 429–444. https://doi.org/10.1016/0377-2217(78)90138-8

Charnes, A. (1994). Data Envelopment Analysis: theory, methodology and application, Springer. Chapter 2–3. 23–62. p. https://doi.org/10.1007/978-94-011-0637-5

Cooper, W. W., Seiford, L. M., Zhu, J. (2004a). Data Envelopment Analysis. International Series in Operations Research & Management Science. 71. Chapter 1. 1–39. p. https://doi.org/10.1007/1-4020-7798-X_1

Cooper, W. W., Deng, H., Huang, Z., Li, S. X. (2004b). Chance constrained programming approaches to congestion in stochastic data envelopment analysis. In: European Journal of Operational Research, 155. 2. 487–501. p. https://doi.org/10.1016/S0377-2217(02)00901-3

FAO database (2010). http://faostat.fao.org/site/339/default.aspx, [Letöltve: 2010.01.04.]

Farrel, M. J. (1957). The Measurement of Productive Efficiency. In: Journal of the Royal Statistical Society, 120. 3. 253–281. p. https://doi.org/10.2307/2343100

Fülöp J., Temesi J. (2000). A Data Envelopment Analysis (DEA) alkalmazása ipari parkok hatékonyságának vizsgálatára. Szigma 32. kötet 3–4. füzet, 85–110. p.

Horn P. (szerk.) (1995): Állattenyésztés 1., Szarvasmarha, ló, juh. Mezőgazda Kiadó.

Khodabakhshi, M., Asgharian, M. (2009). An input relaxation measure of efficiency in stochastic data envelopment analysis. Applied Mathematical Modelling, 33. 4. 2010–2023. https://doi.org/10.1016/j.apm.2008.05.006

Kopasz M. (2007). Útban a versenyképesség felé. AVA3 konferencia, Debrecen, 2007. március 20–21.

Kovács S., Nagy L. (2009). An application of Marcov chain Monte Carlo simulation. Internal Congress on the aspects and visions of applied economics and informatics (AVA4), Debrecen 1333–1338. p. pendrive enclosure ISBN 978-963-502-897

Lotfi, F. H., Jahanshahloo, G. R., Esmaeili, M. (2007). Sensitivity analysis of efficient unit sin the presence of non-discretionary inputs. In: Applied Mathematics and Computation, 190. 2. 1185–1197. https://doi.org/10.1016/j.amc.2007.02.002

Ragsdale, C. T. (2007). Spreadsheet Modeling & Decision Analysis: A Prectical Introduction to Management Science, Fifth Edition. Thomson, 102–113. p.

Seiford, L. M., Zhu, J. (1998). Stability regions for maintaining efficiency in data envelopment analysis. In: European Journal of Operational Research, 108. 1. 127–139. https://doi.org/10.1016/S0377-2217(97)00103-3

Sherman, H. D., Ladino, G. (1995). Managing Bank Productivity Using Data Envelopment Analysis (DEA). In: Interfaces, 25. 2. 60–80. https://doi.org/10.1287/inte.25.2.60

Sueyoshi, T. (2000). Stochastic DEA for restructure strategy: an application to Japanese petroleum company. In: Omega, 28. 4. 385–398. https://doi.org/10.1016/S0305-0483(99)00069-9

Szőke Sz., Nagy L., Kovács S., Balogh P. (2009). Examination of pig farm technology by computer simulation. Internal Congress on the aspects and visions of applied economics and informatics (AVA4), Debrecen 1317–1325. p. pendrive enclosure ISBN 978-963-502-897 https://doi.org/10.19041/APSTRACT/2009/5-6/4

Tibenszkyné F. K. (2007). Az oktatás hatékonyságának mérése a ZMNE 2006-ban végzett hallgatóin Data Envelopment Analysis (DEA) módszer használatával. Doktori Ph.D. értekezés, ZMNE, 149–165. p.

Tofallis, C. (2001). Combining two approaches to efficiency assessment. In: Journal of the Operational Research Society, 52. 11. 1225–1231. https://doi.org/10.1057/palgrave.jors.2601231

Tsionas, E. G. (2003). Combining DEA and stochastic frontier models: An empirical Bayes approach. In: European Journal of Operational Research, 147. 3. 499–510. https://doi.org/10.1016/S0377-2217(02)00248-5

Tóth Á. (1999). Kísérlet a hatékonyság empirikus elemzésére. MNB füzetek 1999/2, 11–33. p.

Published

2010-12-15

How to Cite

Gál, T., & Komlósi, I. (2010). Stochastic Data Envelopment Analysis (DEA) in measuring the efficiency of dairy farms in Hungary. Acta Agraria Kaposváriensis, 14(3), 195-203. https://journal.uni-mate.hu/index.php/aak/article/view/1984

Most read articles by the same author(s)