Modern traffic control systems in state-space approach
Keywords:
state-space theory, road traffic, state estimation, traffic controlAbstract
The paper deals with the modern system and control theoretical approach of road traffic automation. Classical road traffic modelling takes the special characteristics into consideration, which mathematical equations could be cast into a general state-space form of dynamical systems. The first section of the paper introduces the state-space model of urban intersections and of freeway traffic flow; the paper also shows the simulation results of these models. Based on these state-space models one could apply the results of the modern and post-modern system- and control theory; one could develop so called observers and optimal control strategies for road traffic systems. The second part of the paper negotiates the results in estimation procedures of road traffic variables. These procedures multiply the available data set which could be used through the controller design procedure. The third part of the paper shows the control problems of road traffic systems. First a simply urban intersection control then the problem of coordinated intersection control has been investigated. The simulation results are quite promising in both cases. Finally the problem of freeway traffic control has been discussed, the paper shows the simulation results of how the coordinated freeway control could prevent traffic breakdown.
References
Bokor J., Kurutz K., Kohut M., Gáspár P. (1998). Segédletek az „Irányítástechnika 2” című tárgyhoz. Egyetemi jegyzet BME KAUT : Budapest
Diakaki C, Papageorgiou M, Aboudolas K. (2002). A multivariable regulator approach to traffic-responsive network-wide signal control. Control Engineering Practice, Elsevier Ltd., 10(2), 183–195. https://doi.org/10.1016/S0967-0661(01)00121-6
Kulcsár B., Varga I., Bokor J. (2005). Constrained Split Rate Estimation by Moving Horizon. 16th IFAC World Congress Prague, Czech Republic, Jul. 3–8, 2005. IFAC Proceedings, 38(1), 78–83. https://doi.org/10.3182/20050703-6-CZ-1902.02036
Luspay T. (2006). Automatikus Eseménydetektálás Kalman-szűrővel. BME KAUT, Diplomamunka
Maciejowski J. M. (2002). Predictive Control with Constraints. Prentice Hall
Lighthill M. J., Whitham G. B. (1955). On kinematic waves, Part I.: Flood movement in long rivers, Part II.: A theory of traffic flow on long crowded roads. Proceedings of Royal Society, A229, 281–345. https://doi.org/10.1098/rspa.1955.0089
Papageorgiou M., Blosseville J. M., Hadj-Salem H. (1990). Modelling and real-time control of traffic flow ont he southern part of Boulevard Peripherique in Paris. Transpn. Res. A. 24(5), 345–359. https://doi.org/10.1016/0191-2607(90)90047-A
Rao V. C. (2000). Moving Horizon strategies for the constrained Monitoring and Control of Nonlinear Discrete-Time Systems. PhD Thesis U. Of Wisconsin-Maidson
Varga I. (2006). Közúti folyamatok paramétereinek modell alapú becslése és forgalom- függő irányítás. BMGE Közlekedésmérnöki Kar, Doktori (PhD) értekezés
Wang, Y., Papageorgiou M., Messmer A. (2005). An Adaptive Freeway Traffic State Estimator and Its Real-Data Testing–Part I-II. ITSC’05 Wien, 2005. Sept. 13–16.
Welch, G., Bishop, G. (2004). An Introduction to the Kalman Filter. http://www.cs.unc.edu
Downloads
Published
Issue
Section
License
Copyright (c) 2007 Luspay Tamás, Varga István

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

