First calculation of the implementable solar photovoltaic potential in Somogy county and its impact on CO2 emission reduction and job creation

Authors

  • Francisco Javier Rodríguez-Segura Department of Regional and Physical Geography and Institute for Regional Development, University of Granada, 18071 Granada, Spain
  • Juan Carlos Osorio-Aravena Innovative Energy Technologies Center, Universidad Austral de Chile, Campus Patagonia s/n, 5950000 Coyhaique, Chile; IDEA Research Group (Research and Development in Solar Energy), Center for Advanced Studies in Earth Science, Energy and Environment, University of Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain
  • Emilio Muñoz-Cerón IDEA Research Group (Research and Development in Solar Energy), Center for Advanced Studies in Earth Science, Energy and Environment, University of Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain
  • Marina Frolova Department of Regional and Physical Geography and Institute for Regional Development, University of Granada, 18071 Granada, Spain

DOI:

https://doi.org/10.56617/tl.4960

Keywords:

renewable energy potential, energy transition, Hungary, solar PV

Abstract

Due to the current climate urgency, it is necessary to accelerate an energy transition towards renewable energies. To this end, the European Union has set ambitious energy targets. However, in member countries such as Hungary, nuclear energy and fossil fuels continue playing a major role in the energy mix. Nevertheless, this country has a large solar photovoltaic (PV) potential that is hardly exploited, especially in the southern counties, and its technical potential has been less analysed. With the aim to estimate the short-term implementable solar PV potential in Somogy county in southern Hungary, a multi-criteria spatial approach which integrates environmental, technical (with economic attributes), and geographical (with social-acceptability attributes) GIS-based constraints with existing local power plant considerations was employed. Results show that Somogy has a short-term implementable solar PV potential of 2.7 GWp This power potential is about 25 times more than the current installed capacity for generating electricity in Somogy and represents 45% of the national target by 2030 for installed solar PV capacity in Hungary. Furthermore, this potential could create almost 35,000 direct jobs and avoid the emissions of 1.16–2.65 MtCO2 to the atmosphere. The findings and future studies suggested in this work are significant for both local and national levels and could contribute with insights on how to meet climate targets and accelerate energy independence with socio-economic benefits.

References

Atsu, D., Seres, I., Farkas, I. 2021: The state of solar PV and performance analysis of different PV technologies grid-connected installations in Hungary. Renewable and Sustainable Energy Reviews, 141: 110808. DOI: https://doi.org/10.1016/j.rser.2021.110808

Bolcsó D. 2022: Termelési csúcsot értek el a magyarországi naperőművek. https://telex.hu/gazdasag/2022/07/15/termelesi-csucsot-ertek-el-a-magyarorszagi-naperomuvek (retrieved on: 2022.11.21).

CNIG 2018: CORINE Land Cover. Centro Nacional de Información Geográfica http://centrodedescargas.cnig.es/CentroDescargas/catalogo.do?Serie=SIOSE (retrieved on: 2022.08.12).

Csorba, P., Ádám, Sz., Bartos-Elekes, Zs., Bata, T., Bede-Fazekas, Á., Czúcz, B., Csima, P., Csüllög, G., Fodor, N., Frisnyák, S. et al. 2018: Landscapes. In: Kocsis, K.; Gercsák, G.; Horváth, G.; Keresztesi, Z.; Nemerkényi, Zs. (eds.) National atlas of Hungary: volume 2. Natural environment. Budapest, Hungary: Geographical Institute, Research Centre for Astronomy and Earth Sciences 183 p. pp. 112–129.

Dobi I. 2006: Magyarországi szél és napenergia kutatás eredményei. OMSz, Budapest, 147. https://docplayer.hu/966455-Magyarorszagi-szel-es-napenergia-kutatas-eredmenyei.html (retrieved from: 2022.08.07).

Eggleston, S., Buendia, L., Miwa, K., Ngara, T., & Tanabe, K. 2006: IPCC guidelines for national greenhouse gas inventories. https://www.osti.gov/etdeweb/biblio/20880391 (retrieved on: 2022.11.03).

European Parliament. 2022: El PE apuesta por impulsar las energías renovables y el ahorro energético. https://bit.ly/3GsJG6Q (retrieved on: 2022.11.10).

Frolova, M., Frantál, B., Ferrario, V., Centeri, Cs., Herrero-Luque, D., Grónás, V., Martinát, S., Puttilli, M., Da Silva-Almeida, L., D’Angelo, F. 2019: Diverse Energy Transition Patterns in Central and Southern Europe: A Comparative Study of Institutional Landscapes in the Czech Republic, Hungary, Italy, and Spain. Hungarian Journal of Landscape Ecology, 17: 65–89. DOI: https://doi.org/10.56617/tl.3571

Innovációs és Technológiai Minisztérium. 2020: Nemzeti Energiastratégia 2030, kitekintéssel 2040-ig. https://zoldbusz.hu/files/NE2030.pdf (retrieved on: 2022.07.15).

Jacobson, M. Z. 2019: 7 reasons why nuclear energy is not the answer to solve climate change. https://www.oneearth.org/the-7-reasons-why-nuclear-energy-is-not-the-answer-to-solve-climate-change/ (retrieved on: 2023.09.14).

Központi Statisztikai Hivatal. 2020: Az energiagazdálkodás főbb adatai. https://www.ksh.hu/stadat_files/ene/hu/ene0001.html (retrieved on: 2022.09.22).

Központi Statisztikai Hivatal. 2021a: Bruttó villamosenergia-termelés [gigawattóra]. https://www.ksh.hu/stadat_files/ene/hu/ene0009.html (retrieved on: 2022.10.13).

Központi Statisztikai Hivatal. 2021b: Gáz- és villamosenergiafelhasználás megye és régió szerint. https://www.ksh.hu/stadat_files/kor/hu/kor0068.html (retrieved on: 2022.09.22).

Központi Statisztikai Hivatal. 2022a: Terület, településsűrűség, népsűrűség, 2022. január 1. https://www.ksh.hu/stadat_files/fol/hu/fol0006.html (retrieved on: 2022.09.20).

Központi Statisztikai Hivatal. 2022b: A lakónépesség nem, megye és régió szerint, január 1. https://www.ksh.hu/stadat_files/nep/hu/nep0034.html (retrieved on: 2022.09.20).

Kumar, B., Szepesi, G., Čonka, Z., Kolcun, M., Péter, Z., Berényi, L., Szamosi, Z. 2021: Trendline assessment of solar energy potential in Hungary and current scenario of renewable energy in the Visegrád countries for future sustainability. Sustainability, 13(10): 5462. DOI: https://doi.org/10.3390/su13105462

Lechtenböhmer, S., Prantner, M., Schneider, C., Fülöp, O., Sáfián, F. 2016: Alternative and sustainable energy scenarios for Hungary. Wuppertal Institute for Climate, Environment and Energy. https://nbn-resolving.org/urn:nbn:de:bsz:wup4-opus-65042 (retrieved on: 2022.07.27).

Magyar Energetikai és Közmű-szabályozási Hivatal. 2022: Villamosenergia-ipari társaságok 2022. évi adatai. MEKH. http://www.mekh.hu/villamosenergia-ipari-tarsasagok-2022-evi-adatai (retrieved on: 2022.07.19).

Major A. 2022: Napenergia: így teljesülhet egy évtizeddel korábban a 2040-es magyar cél. https://www.portfolio.hu/uzlet/20220628/napenergia-igy-teljesulhet-egy-evtizeddel-korabban-a-2040-es-magyar-cel-552783# (retrieved on: 2022.07.13)

Mezősi, G. 2017: Climate of Hungary. In: Mezősi, G (ed.): The Physical Geography of Hungary. Geography of the Physical Environment. Springer, pp. 101-109. DOI: https://doi.org/10.1007/978-3-319-45183-1_2

Munkácsy B. 2011: Erre van előre!: Egy fenntartható energiarendszer keretei Magyarországon: Vision 2040 Hungary 1.2. Környezeti Nevelési Hálózat Országos Egyesület, Szigetszentmiklós, p. 168.

Munkácsy, B. 2014: A fenntartható energiagazdálkodás felé vezető út: Erre van előre! − Vision 2040 Hungary 2.0. Budapest: ELTE TTK, Környezet- és Tájföldrajzi Tanszék, Környezeti Nevelési Hálózat Országos Egyesület, Szigetszentmiklós, p. 196.

Osorio-Aravena, J. C., Rodríguez-Segura, F. J., Frolova, M., Terrados-Cepeda, J., & Muñoz-Cerón, E. 2022: How much solar PV, wind and biomass energy could be implemented in short-term? A multi-criteria GIS-based approach applied to the province of Jaén, Spain. Journal of Cleaner Production, 366: 132920. DOI: https://doi.org/10.1016/j.jclepro.2022.132920

Pálfy M. 2004: Magyarország szoláris fotovillamos energetikai potenciálja. Energiagazdálkodás, 45: 7–10.

Pintér, G., Zsiborács, H., Hegedűsné Baranyai, N., Vincze, A., Birkner, Z. 2020: The economic and geographical aspects of the status of small-scale photovoltaic systems in Hungary—A case study. Energies, 13(13): 3489. DOI: https://doi.org/10.3390/en13133489

Ram, M., Osorio-Aravena, J. C., Aghahosseini, A., Bogdanov, D., & Breyer, C. (2022). Job creation during a climate compliant global energy transition across the power, heat, transport, and desalination sectors by 2050. Energy, 238: 121690. DOI: https://doi.org/10.1016/j.energy.2021.121690

Rodríguez Segura, F. J., Frolova, M. 2021: Los contextos institucionales de la transición energética en España y Hungría: la diversidad de un objetivo comunitario. Boletín De La Asociación De Geógrafos Españoles, 90. DOI: https://doi.org/10.21138/bage.3130

Rodríguez-Segura, F. J., Frolova, M., Osorio-Aravena J. C. 2023: Aceptación social de las energías renovables en Europa: Estudio comparativo entre la provincia de Jaén (España) y condado de Somogy (Hungría). Anales de Geografía de la Universidad Complutense, 43(1): 211–236. DOI: https://doi.org/10.5209/aguc.85946

Segreto, M., Principe, L., Desormeaux, A., Torre, M., Tomassetti, L., Tratzi, P., Petracchini, F. 2020: Trends in social acceptance of renewable energy across Europe – A literature review. International Journal of Environmental Research and Public Health, 17(24): 9161. DOI: https://doi.org/10.3390/ijerph17249161

SolarPower Europe. 2021: EU Market Outlook for Solar Power 2021–2025. https://api.solarpowereurope.org/uploads/EU_Market_Outlook_for_Solar_ Power_2021_2025_Solar_Power_Europe_d485a0bd2c.pdf) (retrieved on: 2022.07.15).

Somogy Megyei Önkormányzat. 2014a: Szektorális tanulmányok: Energia. In “Common cross border strategy”. Development of common regional strategy in Somogy, Koprivnica Krizevci and Bjelovar Bilogora Counties. HUHR/1101/2.1.4/0005. http://www.som-onkorm.hu/static/files/nyertes_p%C3%A1ly%C3%A1zataink/_5_Energia_HU.pdf (retrieved on: 2022.08.10).

Somogy Megyei Önkormányzat. 2014b: Szektorális tanulmányok: Regionális fejlesztés. In “Common cross border strategy”. Development of common regional strategy in Somogy, Koprivnica Krizevci and Bjelovar Bilogora Counties. HUHR/1101/2.1.4/0005. http://www.som-onkorm.hu/static/files/nyertes_p%C3%A1ly%C3%A1zataink/_1_Region% C3%A1lis%20fejleszt%C3%A9s_HU.pdf (retrieved on: 2022.08.10).

Somogy Megyei Önkormányzat 2020: Somogy Megye Területrendezési Terve 2020. http://www.som-onkorm.hu/somogy-megye-teruletrendezesi-terve-2020.html (retrieved on: 2022.11.05).

Somogy Megyei Önkormányzat. 2021: Somogy Megye Területfejlesztési Program 2021–2027. http://www.som-onkorm.hu/static/files/Megyei_Ter%C3%BCletf_21-27/Somogy%20Megye%20Ter%C3%BCletfejleszt%C3%A9si%20Program.pdf (retrieved on: 2022.11.05).

Szabó, S., Bódis, K., Kougias, I., Moner-Girona, M., Jäger-Waldau, A., Barton, G., Szabó, L. 2017: A methodology for maximizing the benefits of solar landfills on closed sites. Renewable and Sustainable Energy Reviews, 76: 1291–1300. DOI: https://doi.org/10.1016/j.rser.2017.03.117

Toledo, C., Scognamiglio, A. 2021: Agrivoltaic systems design and assessment: A critical review, and a descriptive model towards a sustainable landscape vision (three-dimensional agrivoltaic patterns). Sustainability, 13(12): 6871. DOI: https://doi.org/10.3390/su13126871

Varga G. 2018: Somogy megye klímastratégiája. In Somogy Megyei Éghajlat Változási Platform létrehozása. http://www.somonkorm.hu/static/files/nyertes_p%C3%A1ly%C3%A1zataink/ SomogyMegyeKl%C3%ADmastrat%C3%A9gia.pdf (retrieved on: 2022.08.10).

Žnidarec, M., Primorac, M., Mezei, C., Kovács, S.Z. 2019: Renewable energy potential and decision support in the cross-border region of Croatia and Hungary–potentials for a model application. In: Topić, D., Varjú, V., Horváthné Kovács, B (eds.): Renewable energy sources and energy efficiency for rural areas, MTA KRTK, Pécs, pp. 42–64

Downloads

Published

2023-12-20

Issue

Section

Articles

How to Cite

First calculation of the implementable solar photovoltaic potential in Somogy county and its impact on CO2 emission reduction and job creation. (2023). JOURNAL OF LANDSCAPE ECOLOGY | TÁJÖKÖLÓGIAI LAPOK , 21(2), 136–151. https://doi.org/10.56617/tl.4960

Similar Articles

1-10 of 277

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)