Bee biomonitoring: development of a biodiversity assessment method based on pollen analysis

Authors

  • Emese Dominkó University of Sopron, Faculty of Forestry, Institute of Environmental Protection and Nature Conservation, 9400 Sopron, Bajcsy-Zsilinszky Street 4., e-mail: dominko.emese@uni-sopron.hu https://orcid.org/0009-0000-9363-267X
  • Dávid Schmidt University of Sopron, Faculty of Forestry, Institute of Environmental Protection and Nature Conservation, 9400 Sopron, Bajcsy-Zsilinszky Street 4.
  • Ágnes Csiszár University of Sopron, Faculty of Forestry, Institute of Environmental Protection and Nature Conservation, 9400 Sopron, Bajcsy-Zsilinszky Street 4.
  • Gergely Zagyvai University of Sopron, Faculty of Forestry, Institute of Environmental Protection and Nature Conservation, 9400 Sopron, Bajcsy-Zsilinszky Street 4.
  • Tamás Rétfalvi University of Sopron, Faculty of Forestry, Institute of Environmental Protection and Nature Conservation, 9400 Sopron, Bajcsy-Zsilinszky Street 4.

DOI:

https://doi.org/10.56617/tl.7186

Keywords:

agroforestry, bee biomonitoring, microscopic pollen analysis, biodiversity

Abstract

Our research aimed to assess the biodiversity within a 3-5 km radius of an agroforestry system in Harka. We did this by conducting a microscopic pollen analysis of honey and pollen loads from six bee colonies. Honey samples are excellent indicators of nectar sources, while pollen loads directly show pollen origin. By analyzing both, we gained comprehensive insights into the local flora and the foraging patterns of pollinators. Our findings reveal that the agroforestry environment provides a species-rich and stable food base, which is crucial for promoting pollinator health and ensuring sustainable honey production. We observed significant differences in the nectar and pollen source preferences among the six bee colonies, highlighting the diversity of local vegetation and the unique foraging behaviors of the bees. Looking at our three-month study period, pollen loads showed greater plant family diversity in April and July, while honey samples exhibited higher diversity in May. This could be linked to the overrepresentation of certain species like Brassica napus and Castanea sativa, and the underrepresentation of Robinia pseudoacacia in pollen counts. Interestingly, pollen from the Brassicaceae family was present in all honey samples, likely due to the prolonged flowering of rapeseed and greening practices in the area. The discrepancies between the honey and pollen sample compositions suggest that bees' preferences for nectar and pollen sources can differ. It also indicates that our study area offered a rich and varied food supply for the bee colonies. Analyzing these two hive products together is a valuable method for mapping apiaries and ecosystem structure, and for long-term monitoring. This approach can ultimately help in developing pollinator-friendly habitat management and plant-introduction
strategies.

Author Biography

  • Emese Dominkó, University of Sopron, Faculty of Forestry, Institute of Environmental Protection and Nature Conservation, 9400 Sopron, Bajcsy-Zsilinszky Street 4., e-mail: dominko.emese@uni-sopron.hu

    corresponding author

References

Barnes M. A., Turner C. R. 2016. The ecology of environmental DNA and implications for conservation genetics. Conserv Genet, 17: 1–17 (2016). https://doi.org/10.1007/s10592-015-0775-4

Barth O. M., Freitas A. S., Oliveira E. S., Silva R. A., Maester F. M., Andrella R. R., Cardozo G. M. 2010. Evaluation of the botanical origin of commercial dry bee pollen load batches using pollen analysis: a proposal for technical standardization. Anais da Academia Brasileira de Ciencias, 82(4): 893–902. https://doi.org/10.1590/s0001-37652010000400011

Bazrgar A. B., Ng A., Coleman B., Ashiq M. W., Gordon A., Thevathasan N. 2020. Long-Term Monitoring of Soil Carbon Sequestration in Woody and Herbaceous Bioenergy Crop Production Systems on Marginal Lands in Southern Ontario, Canada. Sustainability, 12(9): 3901. https://doi.org/10.3390/su12093901

Bentrup G., Hopwood J., Adamson N. L., Vaughan M. 2019. Temperate Agroforestry Systems and Insect Pollinators: A Review. Forests, 10(11): 981. https://doi.org/10.3390/f10110981

Bergen K. M., Goetz S. J., Dubayah R. O., Henebry G. M., Hunsaker C. T., Imhoff M. L., Nelson R. F., Parker G. G., Radeloff V. C. 2009. Remote sensing of vegetation 3-D structure for biodiversity and habitat: Review and implications for lidar and radar spaceborne missions, J. Geophys. Res., 114: G00E06. https://doi.org/10.1029/2008JG000883

Borovics A., Somogyi N., Honfy V., Keserű Zs., Gyuricza Cs. 2017. Agrárerdészet, a klímatudatos, természetközeli termelési mód. Erdészeti Lapok, 6: 178–182. https://erdeszetilapok.oszk.hu/01825/pdf/EPA01192_erdeszeti_lapok_2017-06_178-182.pdf

Bullock C., Kretsch C., Candon E. 2007. The Economic and Social Aspects of Biodiversity: Benefits and Costs of Biodiversity in Ireland. Government publications. Dublin. ISBN: 978-1-4064-2105-7. http://dx.doi.org/10.13140/RG.2.2.12736.92169

Chen Y., Wang R. H., Shen T. J. 2023. Biodiversity survey and estimation for line-transect sampling. Frontiers in Plant Science, 14:1159090. https://doi.org/10.3389/fpls.2023.1159090

Crowther L. I., Gilbert F. 2020. The effect of agri-environment schemes on bees on Shropshire farms. Journal for Nature Conservation, 58: 125895. https://doi.org/10.1016/j.jnc.2020.125895

Deiner K., Bik H. M., Mächler E., Seymour M., Lacoursière-Roussel A., Altermatt F., Creer S., Bista I., Lodge D. M., de Vere N., Pfrender M. E., Bernatchez L. 2017. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Molecular ecology, 26(21): 5872–5895. https://doi.org/10.1111/mec.14350

Den Herder M., Moreno G., Mosquera-Losada R.M., Palma J. H., Sidiropoulou A., Freijanes J. J. S., Crous-Duran J., Paulo J. A., Tomé M., Pantera A., Papanastasis V. P., Mantzanas K., Pachana P., Papadopoulos A., Plieninger T., Burgess P. J. 2017. Current extent and stratification of agroforestry in the European Union. Agriculture Ecosystems & Environment. 241: 121–132. https://doi.org/10.1016/j.agee.2017.03.005

Dhaliwal J., Kukal S. S., Sharma S. 2018. Soil organic carbon stock in relation to aggregate size and stability under tree-based cropping systems in Typic Ustochrepts. Agroforest Syst, 92: 275–284 (2018). https://doi.org/10.1007/s10457-017-0103-8

Dominkó E., Kovács Z., Rétfalvi T. 2023. The Role of Pollen Analysis in the Sustainable Development. Chemicel Engineering Transactions, 107: 673–678. https://doi.org/10.3303/CET23107113

Dupont Y. L., Balsby T. J. S., Greve M. B., Marcussen L. K., Kryger P. 2025. Spatio-temporal variation in pollen collected by honey bees (Apis mellifera) in rural-urban mosaic landscapes in Northern Europe. PloS one, 20(2): e0309190. https://doi.org/10.1371/journal.pone.0309190

Elagib N. A., Al-Saidi M. 2020. Balancing the benefits from the water–energy–land–food nexus through agroforestry in the Sahel. Science of The Total Environment, 742: 140509. https://doi.org/10.1016/j.scitotenv.2020.140509

Forbes H., Shelamorf V., Visch W., Lay C. 2022. Farms and forests: evaluating the biodiversity benefits of kelp aquaculture. J Appl Phycol, 34: 3059–3067. https://doi.org/10.1007/s10811-022-02822-y

Guo X., Coops N. C., Tompalski P., Nielsen S. E., Bater C. W., Stadt J. J. 2017. Regional mapping of vegetation structure for biodiversity monitoring using airborne lidar data. Ecological Informatics, 38: 50–61. https://doi.org/10.1016/j.ecoinf.2017.01.005

Gurr G. M., Wratten S. D., Luna J. M. 2003. Multifunction agricultural biodiversity: pest management and other benefits. Basic and Applied ecology, 4: 107–116. https://doi.org/10.1078/1439-1791-00122

Jose S. 2009. Agroforestry for ecosystem services and environmental benefits: an overview. Agroforestry Systems, 76: 1–10. https://doi.org/10.1007/s10457-009-9229-7

Lal R., Stewart B.A. 2012. World soil resources and food security. CRC Press. Taylor & Francis Group. International Standard Book Number-13: 978-1-4398-4451-9

Leakey R. R. B. 1996. Definition of agroforestry revisited. Agroforestry Today, 8: 5–7.

Mcgeogh M. A. 1998. The selection, testing and application of terrestrial insects as bioindicators. Biological Reviews/Biological Reviews of the Cambridge Philosophical Society, 73(2): 181–201. https://doi.org/10.1111/j.1469-185x.1997.tb00029.x

Mosquera-Losada M. R., Santiago-Freijanes J. J., Rois M., Moreno G., Pisanelly A., Lamersdorf N., den Herder M., Burguess P., Fernández-Lorenzo J. L., González-Hernández P., Rigueiro-Rodriguez A. 2016. CAP and agroforestry practices in Europe. Book of abstracts. 3rd European Agroforestry Conference: Celebrating 20 years of Agroforestry research in Europe, Montpellier. 2016. 429–430. https://repositorio.ulisboa.pt/bitstream/10400.5/17577/1/EURAFIIIConf_ Mosquera_Losada_MR_et_all_page_429_431.pdf

Mosquera-Losada M. R., Santiago-Freijanes J. J., Rois-Díaz M., Moreno G., den Herder M., Aldrey-Vázquez J. A., Ferreiro-Domínguez N., Pantera A., Pisanelli A., Rigueiro-Rodríguez A. 2018. Agroforestry in Europe: A land management policy tool to combat climate change. Land Use Policy. 78: 603–613. https://doi.org/10.1016/j.landusepol.2018.06.052

Mutegi J. K., Mugendi D. N., Verchot L. V., Kungu J.B. 2008. Combining napier grass with leguminous shrubs in contour hedgerows controls soil erosion without competing with crops. Agroforestry Systems, 74(1): 37–49. https://doi.org/10.1007/s10457-008-9152-3

Nair P. K. R. 1993. An introduction to agroforestry. Klgwer Academic Publishers, Dordrecht.

Nair P. K. R. 2011. Agroforestry Systems and Environmental Quality: Introduction. Journal of Environmental Quality, 40(3): 784–790. https://doi.org/10.2134/jeq2011.0076

Pardon P., Reubens B., Reheul D., Mertens J., De Frenne P., Coussement T., Janssens P., Verheyen K. 2017. Trees increase soil organic carbon and nutrient availability in temperate agroforestry systems. Agriculture Ecosystems & Environment, 247: 98–111. https://doi.org/10.1016/j.agee.2017.06.018

Pendleton M. 2006. Descriptions of melissopalynological methods involving centrifugation should include data for calculating Relative Centrifugal Force (RCF) or should express data in units of RCF or gravities (g). Grana. 45(1): 71–72. https://doi.org/10.1080/00173130500520479

Potts S. G., Biesmeijer J. C., Kremen C., Neumann P., Schweiger O., Kunin W.E. 2010. Global pollinator declines: trends, impacts and drivers. Trends in Ecology & Evolution, 25(6): 345–353. https://doi.org/10.1016/j.tree.2010.01.007

Riggi L. G. A., Raderschall C. A., Fijen T. P. M., Scheper J., Smith H. G., Kleijn D., Holzschuh A., Aguilera G., Badenhausser I., Bänsch S., Beyer N., Blitzer E.J., Bommarco R., Danforth B., González-Varo J. P., Grab H., Le Provost G., Koveda K., Potts S. G., Rundlöf M., Steffan-Dewenter I., Tscharntke T., Vilà M., Westphal C., Berggren Å., Lundin O. 2024. Early‐season mass‐flowering crop cover dilutes wild bee abundance and species richness in temperate regions: A quantitative synthesis. Journal of Applied Ecology, 61(3): 452–464. https://doi.org/10.1111/1365-2664.14566

Sahu A., Kumar N., Singh C.P., Singh M. 2023. Environmental DNA (eDNA): Powerful technique for biodiversity conservation. Journal for Nature Conservation, 71: 126325. https://doi.org/10.1016/j.jnc.2022.126325

Sawyer R. 2010. Honey Identification. Cardiff Academic Press, ISBN 978-1-904846-53-6

Szabó K., Koponicsné Györke D. 2021. Agrárerdészeti megoldások helye az EU 2021–2027-es új pénzügyi keretében. In: Agrárerdészet a vidékfejlesztés gyakorlatában, pp. 83–91. Magyar Agrár- és Élettudományi Egyetem Kaposvári Campusa, ISBN 978-615-5599-84-2

Torralba M., Fagerholm N., Burgess P. J., Moreno G., Plieninger T. 2016. Do European agroforestry systems enhance biodiversity and ecosystem services? A meta-analysis. Agriculture Ecosystems & Environment, 230: 150–161. https://doi.org/10.1016/j.agee.2016.06.002

Udawatta R.P., Rankoth L., Jose S. 2019. Agroforestry and Biodiversity. Sustainability, 11(10): 2879. https://doi.org/10.3390/su11102879

Udawatta R. P., Rankoth L. M., Jose S. 2021: Agroforestry for Biodiversity Conservation. In: Udawatta R.P., Jose S. (eds) Agroforestry and Ecosystem Services, Springer, Cham. https://doi.org/10.1007/978-3-030-80060-4_10

Van Noordwijk M. 2019. Sustainable development through trees on farms: agroforestry in its fifth decade. World Agroforestry Centre (ICRAF).

Varah A., Jones H., Smith J., Potts S. G. 2020. Temperate agroforestry systems provide greater pollination service than monoculture. Agriculture Ecosystems & Environment, 301: 107031. https://doi.org/10.1016/j.agee.2020.107031

Vityi A., Marosvölgyi B., Kiss A., Schettrer P. 2015. Research and Development Protocol for Arable Agroforestry in Hungary Group. Milestone MS16 Part of Experimental Protocol for Arable Farmers for the EU FP7 Research Project AGFORWARD.

Yadav A., Gendley M. K., Sahu J., Patel P. K., Chandraker K., Dubey A. 2019. Silvopastoral system: A prototype of livestock agroforestry. The Pharma Innovation Journal, 8(2): 76–82.

Zhang Q., Zhang M., Zhou P., Fang Y., Ji Y. 2018. Impact of tree species on barley rhizosphere-associated fungi in an agroforestry ecosystem as revealed by 18S rDNA PCR-DGGE. Agrofor Systems, 92: 541–554. https://doi.org/10.1007/s10457-017-0086-5

Hivatkozott jogszabályok és rendeletek

A Magyar Élelmiszerkönyv 2002. 1-3-2001/110 számú előírása a mézről 10. melléklet a 152/2009. (XI. 12.) FVM rendelete

Internetes források

http1 beeodiversity.com Hozzáférés: 2025. 06. 12.

http2 https://natura.2000.hu/hu Hozzáférés: 2025. 06. 12.

http3 https://www.boraszportal.hu/magyarorszag-borvidekei/soproni-borvidek-5 Hozzáférés: 2025. 06. 12.

Published

2025-12-31

Issue

Section

Articles

How to Cite

Dominkó, E., Schmidt, D., Csiszár, Ágnes, Zagyvai, G., & Rétfalvi, T. (2025). Bee biomonitoring: development of a biodiversity assessment method based on pollen analysis. JOURNAL OF LANDSCAPE ECOLOGY, 23(2), 3-19. https://doi.org/10.56617/tl.7186

Most read articles by the same author(s)