Bee biomonitoring: development of a biodiversity assessment method based on pollen analysis
DOI:
https://doi.org/10.56617/tl.7186Keywords:
agroforestry, bee biomonitoring, microscopic pollen analysis, biodiversityAbstract
Our research aimed to assess the biodiversity within a 3-5 km radius of an agroforestry system in Harka. We did this by conducting a microscopic pollen analysis of honey and pollen loads from six bee colonies. Honey samples are excellent indicators of nectar sources, while pollen loads directly show pollen origin. By analyzing both, we gained comprehensive insights into the local flora and the foraging patterns of pollinators. Our findings reveal that the agroforestry environment provides a species-rich and stable food base, which is crucial for promoting pollinator health and ensuring sustainable honey production. We observed significant differences in the nectar and pollen source preferences among the six bee colonies, highlighting the diversity of local vegetation and the unique foraging behaviors of the bees. Looking at our three-month study period, pollen loads showed greater plant family diversity in April and July, while honey samples exhibited higher diversity in May. This could be linked to the overrepresentation of certain species like Brassica napus and Castanea sativa, and the underrepresentation of Robinia pseudoacacia in pollen counts. Interestingly, pollen from the Brassicaceae family was present in all honey samples, likely due to the prolonged flowering of rapeseed and greening practices in the area. The discrepancies between the honey and pollen sample compositions suggest that bees' preferences for nectar and pollen sources can differ. It also indicates that our study area offered a rich and varied food supply for the bee colonies. Analyzing these two hive products together is a valuable method for mapping apiaries and ecosystem structure, and for long-term monitoring. This approach can ultimately help in developing pollinator-friendly habitat management and plant-introduction
strategies.
References
Barnes M. A., Turner C. R. 2016. The ecology of environmental DNA and implications for conservation genetics. Conserv Genet, 17: 1–17 (2016). https://doi.org/10.1007/s10592-015-0775-4
Barth O. M., Freitas A. S., Oliveira E. S., Silva R. A., Maester F. M., Andrella R. R., Cardozo G. M. 2010. Evaluation of the botanical origin of commercial dry bee pollen load batches using pollen analysis: a proposal for technical standardization. Anais da Academia Brasileira de Ciencias, 82(4): 893–902. https://doi.org/10.1590/s0001-37652010000400011
Bazrgar A. B., Ng A., Coleman B., Ashiq M. W., Gordon A., Thevathasan N. 2020. Long-Term Monitoring of Soil Carbon Sequestration in Woody and Herbaceous Bioenergy Crop Production Systems on Marginal Lands in Southern Ontario, Canada. Sustainability, 12(9): 3901. https://doi.org/10.3390/su12093901
Bentrup G., Hopwood J., Adamson N. L., Vaughan M. 2019. Temperate Agroforestry Systems and Insect Pollinators: A Review. Forests, 10(11): 981. https://doi.org/10.3390/f10110981
Bergen K. M., Goetz S. J., Dubayah R. O., Henebry G. M., Hunsaker C. T., Imhoff M. L., Nelson R. F., Parker G. G., Radeloff V. C. 2009. Remote sensing of vegetation 3-D structure for biodiversity and habitat: Review and implications for lidar and radar spaceborne missions, J. Geophys. Res., 114: G00E06. https://doi.org/10.1029/2008JG000883
Borovics A., Somogyi N., Honfy V., Keserű Zs., Gyuricza Cs. 2017. Agrárerdészet, a klímatudatos, természetközeli termelési mód. Erdészeti Lapok, 6: 178–182. https://erdeszetilapok.oszk.hu/01825/pdf/EPA01192_erdeszeti_lapok_2017-06_178-182.pdf
Bullock C., Kretsch C., Candon E. 2007. The Economic and Social Aspects of Biodiversity: Benefits and Costs of Biodiversity in Ireland. Government publications. Dublin. ISBN: 978-1-4064-2105-7. http://dx.doi.org/10.13140/RG.2.2.12736.92169
Chen Y., Wang R. H., Shen T. J. 2023. Biodiversity survey and estimation for line-transect sampling. Frontiers in Plant Science, 14:1159090. https://doi.org/10.3389/fpls.2023.1159090
Crowther L. I., Gilbert F. 2020. The effect of agri-environment schemes on bees on Shropshire farms. Journal for Nature Conservation, 58: 125895. https://doi.org/10.1016/j.jnc.2020.125895
Deiner K., Bik H. M., Mächler E., Seymour M., Lacoursière-Roussel A., Altermatt F., Creer S., Bista I., Lodge D. M., de Vere N., Pfrender M. E., Bernatchez L. 2017. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Molecular ecology, 26(21): 5872–5895. https://doi.org/10.1111/mec.14350
Den Herder M., Moreno G., Mosquera-Losada R.M., Palma J. H., Sidiropoulou A., Freijanes J. J. S., Crous-Duran J., Paulo J. A., Tomé M., Pantera A., Papanastasis V. P., Mantzanas K., Pachana P., Papadopoulos A., Plieninger T., Burgess P. J. 2017. Current extent and stratification of agroforestry in the European Union. Agriculture Ecosystems & Environment. 241: 121–132. https://doi.org/10.1016/j.agee.2017.03.005
Dhaliwal J., Kukal S. S., Sharma S. 2018. Soil organic carbon stock in relation to aggregate size and stability under tree-based cropping systems in Typic Ustochrepts. Agroforest Syst, 92: 275–284 (2018). https://doi.org/10.1007/s10457-017-0103-8
Dominkó E., Kovács Z., Rétfalvi T. 2023. The Role of Pollen Analysis in the Sustainable Development. Chemicel Engineering Transactions, 107: 673–678. https://doi.org/10.3303/CET23107113
Dupont Y. L., Balsby T. J. S., Greve M. B., Marcussen L. K., Kryger P. 2025. Spatio-temporal variation in pollen collected by honey bees (Apis mellifera) in rural-urban mosaic landscapes in Northern Europe. PloS one, 20(2): e0309190. https://doi.org/10.1371/journal.pone.0309190
Elagib N. A., Al-Saidi M. 2020. Balancing the benefits from the water–energy–land–food nexus through agroforestry in the Sahel. Science of The Total Environment, 742: 140509. https://doi.org/10.1016/j.scitotenv.2020.140509
Forbes H., Shelamorf V., Visch W., Lay C. 2022. Farms and forests: evaluating the biodiversity benefits of kelp aquaculture. J Appl Phycol, 34: 3059–3067. https://doi.org/10.1007/s10811-022-02822-y
Guo X., Coops N. C., Tompalski P., Nielsen S. E., Bater C. W., Stadt J. J. 2017. Regional mapping of vegetation structure for biodiversity monitoring using airborne lidar data. Ecological Informatics, 38: 50–61. https://doi.org/10.1016/j.ecoinf.2017.01.005
Gurr G. M., Wratten S. D., Luna J. M. 2003. Multifunction agricultural biodiversity: pest management and other benefits. Basic and Applied ecology, 4: 107–116. https://doi.org/10.1078/1439-1791-00122
Jose S. 2009. Agroforestry for ecosystem services and environmental benefits: an overview. Agroforestry Systems, 76: 1–10. https://doi.org/10.1007/s10457-009-9229-7
Lal R., Stewart B.A. 2012. World soil resources and food security. CRC Press. Taylor & Francis Group. International Standard Book Number-13: 978-1-4398-4451-9
Leakey R. R. B. 1996. Definition of agroforestry revisited. Agroforestry Today, 8: 5–7.
Mcgeogh M. A. 1998. The selection, testing and application of terrestrial insects as bioindicators. Biological Reviews/Biological Reviews of the Cambridge Philosophical Society, 73(2): 181–201. https://doi.org/10.1111/j.1469-185x.1997.tb00029.x
Mosquera-Losada M. R., Santiago-Freijanes J. J., Rois M., Moreno G., Pisanelly A., Lamersdorf N., den Herder M., Burguess P., Fernández-Lorenzo J. L., González-Hernández P., Rigueiro-Rodriguez A. 2016. CAP and agroforestry practices in Europe. Book of abstracts. 3rd European Agroforestry Conference: Celebrating 20 years of Agroforestry research in Europe, Montpellier. 2016. 429–430. https://repositorio.ulisboa.pt/bitstream/10400.5/17577/1/EURAFIIIConf_ Mosquera_Losada_MR_et_all_page_429_431.pdf
Mosquera-Losada M. R., Santiago-Freijanes J. J., Rois-Díaz M., Moreno G., den Herder M., Aldrey-Vázquez J. A., Ferreiro-Domínguez N., Pantera A., Pisanelli A., Rigueiro-Rodríguez A. 2018. Agroforestry in Europe: A land management policy tool to combat climate change. Land Use Policy. 78: 603–613. https://doi.org/10.1016/j.landusepol.2018.06.052
Mutegi J. K., Mugendi D. N., Verchot L. V., Kungu J.B. 2008. Combining napier grass with leguminous shrubs in contour hedgerows controls soil erosion without competing with crops. Agroforestry Systems, 74(1): 37–49. https://doi.org/10.1007/s10457-008-9152-3
Nair P. K. R. 1993. An introduction to agroforestry. Klgwer Academic Publishers, Dordrecht.
Nair P. K. R. 2011. Agroforestry Systems and Environmental Quality: Introduction. Journal of Environmental Quality, 40(3): 784–790. https://doi.org/10.2134/jeq2011.0076
Pardon P., Reubens B., Reheul D., Mertens J., De Frenne P., Coussement T., Janssens P., Verheyen K. 2017. Trees increase soil organic carbon and nutrient availability in temperate agroforestry systems. Agriculture Ecosystems & Environment, 247: 98–111. https://doi.org/10.1016/j.agee.2017.06.018
Pendleton M. 2006. Descriptions of melissopalynological methods involving centrifugation should include data for calculating Relative Centrifugal Force (RCF) or should express data in units of RCF or gravities (g). Grana. 45(1): 71–72. https://doi.org/10.1080/00173130500520479
Potts S. G., Biesmeijer J. C., Kremen C., Neumann P., Schweiger O., Kunin W.E. 2010. Global pollinator declines: trends, impacts and drivers. Trends in Ecology & Evolution, 25(6): 345–353. https://doi.org/10.1016/j.tree.2010.01.007
Riggi L. G. A., Raderschall C. A., Fijen T. P. M., Scheper J., Smith H. G., Kleijn D., Holzschuh A., Aguilera G., Badenhausser I., Bänsch S., Beyer N., Blitzer E.J., Bommarco R., Danforth B., González-Varo J. P., Grab H., Le Provost G., Koveda K., Potts S. G., Rundlöf M., Steffan-Dewenter I., Tscharntke T., Vilà M., Westphal C., Berggren Å., Lundin O. 2024. Early‐season mass‐flowering crop cover dilutes wild bee abundance and species richness in temperate regions: A quantitative synthesis. Journal of Applied Ecology, 61(3): 452–464. https://doi.org/10.1111/1365-2664.14566
Sahu A., Kumar N., Singh C.P., Singh M. 2023. Environmental DNA (eDNA): Powerful technique for biodiversity conservation. Journal for Nature Conservation, 71: 126325. https://doi.org/10.1016/j.jnc.2022.126325
Sawyer R. 2010. Honey Identification. Cardiff Academic Press, ISBN 978-1-904846-53-6
Szabó K., Koponicsné Györke D. 2021. Agrárerdészeti megoldások helye az EU 2021–2027-es új pénzügyi keretében. In: Agrárerdészet a vidékfejlesztés gyakorlatában, pp. 83–91. Magyar Agrár- és Élettudományi Egyetem Kaposvári Campusa, ISBN 978-615-5599-84-2
Torralba M., Fagerholm N., Burgess P. J., Moreno G., Plieninger T. 2016. Do European agroforestry systems enhance biodiversity and ecosystem services? A meta-analysis. Agriculture Ecosystems & Environment, 230: 150–161. https://doi.org/10.1016/j.agee.2016.06.002
Udawatta R.P., Rankoth L., Jose S. 2019. Agroforestry and Biodiversity. Sustainability, 11(10): 2879. https://doi.org/10.3390/su11102879
Udawatta R. P., Rankoth L. M., Jose S. 2021: Agroforestry for Biodiversity Conservation. In: Udawatta R.P., Jose S. (eds) Agroforestry and Ecosystem Services, Springer, Cham. https://doi.org/10.1007/978-3-030-80060-4_10
Van Noordwijk M. 2019. Sustainable development through trees on farms: agroforestry in its fifth decade. World Agroforestry Centre (ICRAF).
Varah A., Jones H., Smith J., Potts S. G. 2020. Temperate agroforestry systems provide greater pollination service than monoculture. Agriculture Ecosystems & Environment, 301: 107031. https://doi.org/10.1016/j.agee.2020.107031
Vityi A., Marosvölgyi B., Kiss A., Schettrer P. 2015. Research and Development Protocol for Arable Agroforestry in Hungary Group. Milestone MS16 Part of Experimental Protocol for Arable Farmers for the EU FP7 Research Project AGFORWARD.
Yadav A., Gendley M. K., Sahu J., Patel P. K., Chandraker K., Dubey A. 2019. Silvopastoral system: A prototype of livestock agroforestry. The Pharma Innovation Journal, 8(2): 76–82.
Zhang Q., Zhang M., Zhou P., Fang Y., Ji Y. 2018. Impact of tree species on barley rhizosphere-associated fungi in an agroforestry ecosystem as revealed by 18S rDNA PCR-DGGE. Agrofor Systems, 92: 541–554. https://doi.org/10.1007/s10457-017-0086-5
Hivatkozott jogszabályok és rendeletek
A Magyar Élelmiszerkönyv 2002. 1-3-2001/110 számú előírása a mézről 10. melléklet a 152/2009. (XI. 12.) FVM rendelete
Internetes források
http1 beeodiversity.com Hozzáférés: 2025. 06. 12.
http2 https://natura.2000.hu/hu Hozzáférés: 2025. 06. 12.
http3 https://www.boraszportal.hu/magyarorszag-borvidekei/soproni-borvidek-5 Hozzáférés: 2025. 06. 12.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Dominkó Emese, Schmidt Dávid, Csiszár Ágnes, Zagyvai Gergely, Rétfalvi Tamás

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
A folyóirat Open Access (Gold). Cikkeire a Creative Commons 4.0 standard licenc alábbi típusa vonatkozik: CC-BY-NC-ND-4.0. Ennek értelmében a mű szabadon másolható, terjeszthető, bemutatható és előadható, azonban nem használható fel kereskedelmi célokra (NC), továbbá nem módosítható és nem készíthető belőle átdolgozás, származékos mű (ND). A licenc alapján a szerző vagy a jogosult által meghatározott módon fel kell tüntetni a szerző nevét és a szerzői mű címét (BY).




