Definition of farm manager software and overview of its basic functions
DOI:
https://doi.org/10.18531/sme.vol.11.no.3.pp.5-18Keywords:
FMIS, farm manager software, IoT, digital agronomy, Smart farmingAbstract
In digital agronomy, one can come across many concepts such as complex precision farm manager software, data-driven farming, smart farming. In the following study, I have attempted to define these concepts. In particular, the concept of farm management software, which can be defined as multifunctional technologies that provide support for the optimization and management of various activities on the farm based on data generated during farming and data from external sources. These systems help farmers better understand production processes, maximize yields and reduce costs, while increasing farm efficiency and promoting sustainable agricultural practices. In addition to defining farm management software, the paper details their functions and the specific benefits they offer to operators in the modern agricultural economy. By focusing on data-driven decision making, these software can play a key role in improving the efficiency of agricultural production.
References
Abiri, R. – Rizan, N. – Balasundram, S. K. – Shahbazi, A. B. – Abdul-Hamid, H. (2023): Appli-cation of digital technologies for ensuring agricultural productivity. Heliyon 9 (2023) e22601. https://doi.org/10.1016/j.heliyon.2023.e22601
Ammann, J. – Walter, A. – El Benni, N. (2022): Adoption and perception of farm management information systems by future Swiss farm managers – An online study. Journal of Rural Studies, 89, 298-305. https://doi.org/10.1016/j.jrurstud.2021.12.008
Boldt, J. – Hansen, U. E. – Nygaard, I. – Traerup, S. L. M. (2012): Overcoming Barriers to the Transfer and Diffusion of Climate Technologies. Roskilde. https://www.researchgate.net/figure/The-S-curve-of-technology-diffusion_fig5_323265110, https://www.researchgate.net/publication/323265110_Overcoming_Barriers_to_the_Transfer_and_Diffusion_of_Climate_Technologies
Digitális Jólét Program, Magyarország Digitális Agrár Stratégiája 2019-2022; 2019 augusztus. https://digitalisjoletprogram.hu/files/24/2e/242e263bd2b441f6f30cf400e06e1e4a.pdf
Fountas, S. – Carli, G. – Sørensen, C.G. – Tsiropoulos, Z. – Cavalaris, C. – Vatsanidou, A. – Liakos, B. – Canavari M. – Wiebensohn, J. – Tisserye, B. (2015): Farm management informa-tion systems: Current situation and future perspectives. Computers and Electronics in Agriculture, 115. 40-50. https://doi.org/10.1016/j.compag.2015.05.011
G2.com: Best Farm Management Software – What is Farm Management software? https://www.g2.com/categories/farm-management
International Society of Precision Agriculture (ISPA): Precision Agriculture Definition. Revised January 2024. https://www.ispag.org/about/definition A letöltés ideje: 2024.02.19
Józsa V. – Káposzta J. – Nagy H. (2017): Is smartness the privilege of cities? Pilot development and application in the Hungarian-Slovak border region. Romanian Journal of Regional Science. Vol. 11, No.2, Winter. https://rjrs.ase.ro/wp-content/uploads/2017/03/V112/V1122.Josza.pdf
Kaloxylos, A. – Eigenmann, R. – Teye, F. – Politopoulou, Z. – Wolfert, S. – Shrank, C. – Pesonen, L. (2012): Farm management systems and the future internet era. Computers and Elect-ronics in Agriculture. 89, 130–144. https://doi.org/10.1016/j.compag.2012.09.002
Káposzta J. – Horváth P. (2019): A smart falu koncepciójának főbb összefüggései és kapcsolódása a hazai vidékgazdaság fejlesztésistratégiájához. Tér és Társadalom. 33-1. https://doi.org/10.17649/TET.33.1.3091
Köksal, Ö. – Tekinerdogan, B. (2019): Architecture design approach for IoT-based farm mana-gement information systems. Precision Agriculture. 20, 926–958. https://doi.org/10.1007/s11119-018-09624-8
Markets & Markets, Farm Management Software Market with Covid-19 Impact Analysis by Application (Precision Farming, Livestock, Aquaculture) https://www.marketsandmarkets.com/Market-Reports/farm-management-software-market-217016636.html
Melzer, M. – Bellingrath-Kimura, S. – Gandorfer, M. (2023): Commercial farm management information systems - A demand-oriented analysis of functions in practical use. Smart Agricultu-ral Technology 4 (2023) 100203. https://doi.org/10.1016/j.atech.2023.100203
Munz, J. – Gindele, N. – Doluschitz, R. (2020): Exploring the characteristics and utilisation of Farm Management, Information Systems (FMIS) in Germany. Computers and Electronics in Agricul-ture, 170. szám, 105-246 old. https://doi.org/10.1016/j.compag.2020.105246
Nikkilä, R. – Seilonen, I. – Koskinen, K. (2010): Software architecture for farm management information systems in precision agriculture. Computers and Electronics in Agriculture 70 328–336. https://doi.org/10.1016/j.compag.2009.08.013
Oláh I.: Nemzeti Agrárgazdasági Kamara Digitális Agrár Akadémia programja, 2019 https://www.nak.hu/kiadvanyok/digitalis-agrarakademia-2019/3-digitalis-farm-menedzsment
Osrof, H. Y – Tan, C.L. – Angappa, G. – Yeo, S.F. – Tan, K. H. (2023): Adoption of smart farming technologies in field operations: A systematic review and future research agenda. Tech-nology in Society 75. 102400. https://doi.org/10.1016/j.techsoc.2023.102400
Porter, M.E. – Heppelmann J.E. (2014): Wie smarte Produkte den Wettbewerb verändern. Harvard Business manager. 12, 1-28. https://docplayer.org/12324512-Wie-smarte-produkte-den-wettbewerb-veraendern.html
Rupnik, R. – Kukar, M. – Vračar, P – Košir, D. – Pevec, D. – Bosnić, Z. (2019): AgroDSS: A decision support system for agriculture and farming. Computers and Electronics in Agriculture 161. 260–271. https://doi.org/10.1016/j.compag.2018.04.001
Sørensen, C. G. – Pesonen, L. – Bochtis, D. D. – Vougioukas, S. G. – Suomi, P. (2011): Func-tional requirements for a future farm management information system. Computers and Electronics in Agriculture, 76(2), 266–276. https://doi.org/10.1016/j.compag.2011.02.005
Szőke V. - Kovács L. (2020): Mezőgazdaság 4.0 – relevancia, lehetőségek, kihívások. Gazdál-kodás. 64(4), 289-304. https://www.researchgate.net/publication/344284006_Mezogazdasag_40_-_relevancia_lehetosegek_kihivasok
Top 9 Farm Management Software https://www.predictiveanalyticstoday.com/top-farm-management-software/
Verdouw, C.N. – Robbemond, R.M. – Wolfert, J. (2015): ERP in agriculture: Lessons learned from the Dutch horticulture. Computers and Electronics in Agriculture. 114. 125–133. https://doi.org/10.1016/j.compag.2015.04.002
Ye, H. – Wang, Y. – Zhang, Y. – Hu, X. – Wei, C. – Zhao, W. – Li X. (2023): Digital transfor-mation of agriculture: A new integrated modeling framework for arable farm enterprises. Compu-ters and Electronics in Agriculture. 212.108041. https://doi.org/10.1016/j.compag.2023.108041
Zambon, I. – Cecchini, M. – Egidi, G. – Saporito, M. G. – Colantoni, A. (2019): Revolution 4.0: Industry vs. Agriculture in a Future Development for SMEs. Processes. Processes. 7, 1-36. https://doi.org/10.3390/pr7010036
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Dajka Máté Ferenc
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
A folyóirat Open Access (Gold). Cikkeire a Creative Commons 4.0 standard licenc alábbi típusa vonatkozik: CC-BY-NC-ND-4.0. Ennek értelmében a mű szabadon másolható, terjeszthető, bemutatható és előadható, azonban nem használható fel kereskedelmi célokra (NC), továbbá nem módosítható és nem készíthető belőle átdolgozás, származékos mű (ND). A licenc alapján a szerző vagy a jogosult által meghatározott módon fel kell tüntetni a szerző nevét és a szerzői mű címét (BY).