Impact of climate change warming on the performance of medium-sized solar power plants
DOI:
https://doi.org/10.18531/sme.vol.12.no.1.pp.89-106Keywords:
solar PV, warming, efficiency, climate change, RCP scenarioAbstract
The study focuses on the modelling of medium-sized solar PV systems in three central European cities - Miskolc, Sopron and Veszprém - and the impact of climate change on electricity generation. The analysis is based on the scenarios RCP2.6, RCP4.5 and RCP8.5. The Meteonorm weather database was used to generate input time series for the analyses, while the simulations were performed by the SAM program. The results show that climate change impacts can cause significant variations in the performance of solar PV systems. Increasing temperatures negatively affect the efficiency of the systems, while changes in global radiation are positively correlated with performance. The maximum temperature increase expected under scenarios RCP4.5 and RCP8.5 may reduce the efficiency of power generation, while scenario RCP2.6 shows more stable results. The results of the analysis can provide useful guidance for the design and installation of future solar PV projects, especially to adapt to changing climate conditions. Such studies will contribute to a more efficient use of renewable energy sources to support the energy transition, while also contributing to Hungary's sustainability goals.
References
Bozsik, N. – Szeberényi, A. – Bozsik, N. (2024a): Impact of Climate Change on Electric Energy Production from Medium-Size Photovoltaic Module Systems Based on RCP Climate Scenarios. Energies, 17(16), 4009. https://doi.org/10.3390/en17164009
Bozsik, N. – Szeberényi, A. – Bozsik, N. (2024b): Impact of Climate Change on the Perfor-mance of Household-Scale Photovoltaic Systems, Hightech and Innovation Journal, 5(1), 1–15. https://doi.org/10.28991/HIJ-2024-05-01-01
Eurostat (2025): Complete energy balances, https://ec.europa.eu/eurostat/databrowser/view/NRG_BAL_C__custom_14825795/default/table?lang=en, in: https://doi.org/10.2908/NRG_BAL_C
He, T. – Wang, D. – Qu, Y. (2018): 5.06 - Land Surface Albedo, Editor(s): Shunlin Liang, Comprehensive Remote Sensing, 5, 140–162, https://doi.org/10.1016/B978-0-12-409548-9.10370-7
Hollósy, Zs. – Poór, J. – Tóth, J. (2019): „Háztartási méretű kiserőművek: Napelemes rendsze-rek gazdaságossági vizsgálata”. Studia Mundi – Economica, 6(1) 22–33. https://doi.org/10.18531/Studia.Mundi.2019.06.01.22-33
IEA (2022): Hungary reports, https://www.iea.org/reports/hungary-2022/executive-summary
Jackson, N. D. – Gunda, T (2021): Evaluation of extreme weather impacts on utility-scale pho-tovoltaic plant performance in the United States. Applied Energy, 302, 117508. https://doi.org/10.1016/j.apenergy.2021.117508
Markvart, T. – Castañer, L. (2018): Chapter I-1-A - Principles of Solar Cell Operation. In: So-teris A. Kalogirou (ed.) McEvoy's Handbook of Photovoltaics (Third Edition), Academic Press, 2018,
3–28. https://doi.org/10.1016/B978-0-12-809921-6.00001-X
Meinshausen, M. – Smith, S. J. – Calvin, K. et al. (2011): The RCP greenhouse gas concentrati-ons and their extensions from 1765 to 2300. Climatic Change, 109, 213. https://doi.org/10.1007/s10584-011-0156-z
Meloun, M. – Militký, J. (2011): 7-Correlation. In: Statistical Data Analysis. India: Woodhead Publishing, 631–666, https://doi.org/10.1533/9780857097200.631
Mester, M. A. (2015): A globális klímaváltozás becslésére készült új RCP kibocsátási szcenári-ók összehasonlítása, Budapest: ELTE. https://nimbus.elte.hu/tanszek/docs/BSc/2015/MesterMateAttila_2015.pdf
Meteonorm 8 (2021): Handbook part II: Theory, https://meteonorm.com/assets/downloads/mn81_theory.pdf
Nakicenovic, N. – Alcamo, J. – Davis, G. et al. (2000): Special Report on Emissions Scenarios, Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, Uni-ted Kingdom and New York, 599 p.
Perez, R. - Ineichen, P. - Seals, R. - Michalsky, J. – Stewart, R. (1990): Modeling daylight avai-lability and irradiance components from direct and global irradiance. Solar Energy, 44(5), 271–289. https://doi.org/10.1016/0038-092X(90)90055-H
RCP (2009): RCP database version 2.0.5, https://tntcat.iiasa.ac.at/RcpDb/dsd?Action=htmlpage&page=compare
RCP (2023): Representative Concentration Pathways Database, https://iiasa.ac.at/models-tools-data/rcp
Ready, J. F. (1997): Chapter 6 – Care and Maintenance of Lasers. In: Ready, J. F. (ed.): Indust-rial Applications of Lasers (Second Edition), Academic Press, 193–214. https://doi.org/10.1016/B978-012583961-7/50008-9
Sarofim, M.C. – Smith, C.J. – Malek, P. et al. (2024): High radiative forcing climate scenario relevance analyzed with a ten-million-member ensemble. Nat Commun 15, 8185. https://doi.org/10.1038/s41467-024-52437-9
Schulte-Uebbing, L. – Hansen, G. – Hernández, A. M. – Winter, M. (2015): Chapter scientists in the IPCC AR5—experience and lessons learned. Current Opinion in Environmental Susta-inability, 14, 250–256. https://doi.org/10.1016/j.cosust.2015.06.012
Shahzad, U. (2022): „Analysis of Solar System Models Using System Advisor Model Simulati-ons” 9 (2022. szeptember 21.): 23–32., https://www.researchgate.net/publication/363700701_Analysis_of_Solar_System_ Models_Using_System_Advisor_Model_Simulations
Sheik, M. S. – Kakati, P. – Dandotiya, D. – Ravi M., R. – Ramesh, C. S. (2022): A comprehen-sive review on various cooling techniques to decrease an operating temperature of solar pho-tovoltaic panels. Energy Nexus, 8, 100161. https://doi.org/10.1016/j.nexus.2022.100161
Smith, C. – Crook, R. – Forster, P. (2015): Changes in solar PV output due to water vapour loading in a future climate scenario. https://doi.org/10.4229/EUPVSEC20152015-5BV.1.30
Taylor, R. (1990): Interpretation of the Correlation Coefficient: A Basic Review. J. Diagn. Med. Sonogr., 6(1), 35–39. https://doi.org/10.1177/875647939000600106
van Vuuren, D.P. – Edmonds, J. – Kainuma, M. et al. (2011): The representative concentration pathways: an overview. Climatic Change, 109, 5. https://doi.org/10.1007/s10584-011-0148-z
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Bozsik Nándor, Takács István

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
A folyóirat Open Access (Gold). Cikkeire a Creative Commons 4.0 standard licenc alábbi típusa vonatkozik: CC-BY-NC-ND-4.0. Ennek értelmében a mű szabadon másolható, terjeszthető, bemutatható és előadható, azonban nem használható fel kereskedelmi célokra (NC), továbbá nem módosítható és nem készíthető belőle átdolgozás, származékos mű (ND). A licenc alapján a szerző vagy a jogosult által meghatározott módon fel kell tüntetni a szerző nevét és a szerzői mű címét (BY).