Impact of climate change warming on the performance of medium-sized solar power plants

Authors

DOI:

https://doi.org/10.18531/sme.vol.12.no.1.pp.89-106

Keywords:

solar PV, warming, efficiency, climate change, RCP scenario

Abstract

The study focuses on the modelling of medium-sized solar PV systems in three central European cities - Miskolc, Sopron and Veszprém - and the impact of climate change on electricity generation. The analysis is based on the scenarios RCP2.6, RCP4.5 and RCP8.5. The Meteonorm weather database was used to generate input time series for the analyses, while the simulations were performed by the SAM program. The results show that climate change impacts can cause significant variations in the performance of solar PV systems. Increasing temperatures negatively affect the efficiency of the systems, while changes in global radiation are positively correlated with performance. The maximum temperature increase expected under scenarios RCP4.5 and RCP8.5 may reduce the efficiency of power generation, while scenario RCP2.6 shows more stable results. The results of the analysis can provide useful guidance for the design and installation of future solar PV projects, especially to adapt to changing climate conditions. Such studies will contribute to a more efficient use of renewable energy sources to support the energy transition, while also contributing to Hungary's sustainability goals.

Author Biographies

  • Nándor Bozsik, Óbudai Egyetem Biztonságtudományi Doktori Iskola, Obuda University, Doctoral School on Safety and Security Sciences

    PhD student
    bozsik.nandor@uni-obuda.hu

  • István Takács, Óbudai Egyetem Keleti Károly Gazdasági Kar, Obuda University, Keleti Károly Faculty of Business and Management

    PhD, professor
    takacs.istvan@kgk.uni-obuda.hu

References

Bozsik, N. – Szeberényi, A. – Bozsik, N. (2024a): Impact of Climate Change on Electric Energy Production from Medium-Size Photovoltaic Module Systems Based on RCP Climate Scenarios. Energies, 17(16), 4009. https://doi.org/10.3390/en17164009

Bozsik, N. – Szeberényi, A. – Bozsik, N. (2024b): Impact of Climate Change on the Perfor-mance of Household-Scale Photovoltaic Systems, Hightech and Innovation Journal, 5(1), 1–15. https://doi.org/10.28991/HIJ-2024-05-01-01

Eurostat (2025): Complete energy balances, https://ec.europa.eu/eurostat/databrowser/view/NRG_BAL_C__custom_14825795/default/table?lang=en, in: https://doi.org/10.2908/NRG_BAL_C

He, T. – Wang, D. – Qu, Y. (2018): 5.06 - Land Surface Albedo, Editor(s): Shunlin Liang, Comprehensive Remote Sensing, 5, 140–162, https://doi.org/10.1016/B978-0-12-409548-9.10370-7

Hollósy, Zs. – Poór, J. – Tóth, J. (2019): „Háztartási méretű kiserőművek: Napelemes rendsze-rek gazdaságossági vizsgálata”. Studia Mundi – Economica, 6(1) 22–33. https://doi.org/10.18531/Studia.Mundi.2019.06.01.22-33

IEA (2022): Hungary reports, https://www.iea.org/reports/hungary-2022/executive-summary

Jackson, N. D. – Gunda, T (2021): Evaluation of extreme weather impacts on utility-scale pho-tovoltaic plant performance in the United States. Applied Energy, 302, 117508. https://doi.org/10.1016/j.apenergy.2021.117508

Markvart, T. – Castañer, L. (2018): Chapter I-1-A - Principles of Solar Cell Operation. In: So-teris A. Kalogirou (ed.) McEvoy's Handbook of Photovoltaics (Third Edition), Academic Press, 2018,

3–28. https://doi.org/10.1016/B978-0-12-809921-6.00001-X

Meinshausen, M. – Smith, S. J. – Calvin, K. et al. (2011): The RCP greenhouse gas concentrati-ons and their extensions from 1765 to 2300. Climatic Change, 109, 213. https://doi.org/10.1007/s10584-011-0156-z

Meloun, M. – Militký, J. (2011): 7-Correlation. In: Statistical Data Analysis. India: Woodhead Publishing, 631–666, https://doi.org/10.1533/9780857097200.631

Mester, M. A. (2015): A globális klímaváltozás becslésére készült új RCP kibocsátási szcenári-ók összehasonlítása, Budapest: ELTE. https://nimbus.elte.hu/tanszek/docs/BSc/2015/MesterMateAttila_2015.pdf

Meteonorm 8 (2021): Handbook part II: Theory, https://meteonorm.com/assets/downloads/mn81_theory.pdf

Nakicenovic, N. – Alcamo, J. – Davis, G. et al. (2000): Special Report on Emissions Scenarios, Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, Uni-ted Kingdom and New York, 599 p.

Perez, R. - Ineichen, P. - Seals, R. - Michalsky, J. – Stewart, R. (1990): Modeling daylight avai-lability and irradiance components from direct and global irradiance. Solar Energy, 44(5), 271–289. https://doi.org/10.1016/0038-092X(90)90055-H

RCP (2009): RCP database version 2.0.5, https://tntcat.iiasa.ac.at/RcpDb/dsd?Action=htmlpage&page=compare

RCP (2023): Representative Concentration Pathways Database, https://iiasa.ac.at/models-tools-data/rcp

Ready, J. F. (1997): Chapter 6 – Care and Maintenance of Lasers. In: Ready, J. F. (ed.): Indust-rial Applications of Lasers (Second Edition), Academic Press, 193–214. https://doi.org/10.1016/B978-012583961-7/50008-9

Sarofim, M.C. – Smith, C.J. – Malek, P. et al. (2024): High radiative forcing climate scenario relevance analyzed with a ten-million-member ensemble. Nat Commun 15, 8185. https://doi.org/10.1038/s41467-024-52437-9

Schulte-Uebbing, L. – Hansen, G. – Hernández, A. M. – Winter, M. (2015): Chapter scientists in the IPCC AR5—experience and lessons learned. Current Opinion in Environmental Susta-inability, 14, 250–256. https://doi.org/10.1016/j.cosust.2015.06.012

Shahzad, U. (2022): „Analysis of Solar System Models Using System Advisor Model Simulati-ons” 9 (2022. szeptember 21.): 23–32., https://www.researchgate.net/publication/363700701_Analysis_of_Solar_System_ Models_Using_System_Advisor_Model_Simulations

Sheik, M. S. – Kakati, P. – Dandotiya, D. – Ravi M., R. – Ramesh, C. S. (2022): A comprehen-sive review on various cooling techniques to decrease an operating temperature of solar pho-tovoltaic panels. Energy Nexus, 8, 100161. https://doi.org/10.1016/j.nexus.2022.100161

Smith, C. – Crook, R. – Forster, P. (2015): Changes in solar PV output due to water vapour loading in a future climate scenario. https://doi.org/10.4229/EUPVSEC20152015-5BV.1.30

Taylor, R. (1990): Interpretation of the Correlation Coefficient: A Basic Review. J. Diagn. Med. Sonogr., 6(1), 35–39. https://doi.org/10.1177/875647939000600106

van Vuuren, D.P. – Edmonds, J. – Kainuma, M. et al. (2011): The representative concentration pathways: an overview. Climatic Change, 109, 5. https://doi.org/10.1007/s10584-011-0148-z

Published

2025-03-31

How to Cite

Bozsik, N., & Takács, I. (2025). Impact of climate change warming on the performance of medium-sized solar power plants. Studia Mundi – Economica, 12(1), 89-106. https://doi.org/10.18531/sme.vol.12.no.1.pp.89-106

Most read articles by the same author(s)