How Different Mulch Materials Regulate Soil Moisture and Microbiological Activity?

Authors

  • Enikő Papdi Hungarian University of Agriculture and Life Sciences, Department of Agro-Environmental Studies
  • Andrea Veres Hungarian University of Agriculture and Life Sciences, Department of Agro-Environmental Studies
  • Flórián Kovács Hungarian University of Agriculture and Life Sciences, Department of Agro-Environmental Studies
  • Katalin Juhos Hungarian University of Agriculture and Life Sciences, Department of Agro-Environmental Studies

DOI:

https://doi.org/10.33038/jcegi.3560

Keywords:

living mulch, agro textile, wool mulch, β-glucosidase, soil active carbon

Abstract

As a result of climate change, the frequency of droughts across Europe is showing an increasing trend. The solution to this problem can be various soil cover techniques, which help to preserve soil moisture and soil biological activity, thereby increasing crop yield. In our research, we examined how different mulch materials affect the regulation of soil moisture and the microbiological activity of the soil. The experiments were set up on two sites: a sandy soil with a low soil organic matter content (Királyhalom, Serbia) and an coarse loamy soil with a higher water capacity (Thessaloniki, Greece). The treatments were set up in 4 repetitions with pepper plants (Capsicum annuum L.). Daily intensive irrigation with wool mulch, agrotextile, straw mulch and control treatments was used on the Serbian site. The irrigation was carried out every 6 days at the Greek site, where the treatments were as follows: wool mulch with plants, wool mulch without plants, plants without mulch and the control without plants. The yield was measured, and the moisture content, β-glucosidase activity and active (permanganate oxidizable) carbon content of the soils at the time of sampling were examined every 2 weeks. In the Serbian area, wool mulch showed significantly lower β-glucosidase activity compared to the other treatments. This was presumably due to the good water absorption capacity of the wool mulch and the fact that the soil could not aerate in addition to the intensive irrigation, thus the enzyme activity decreased. All mulch treatments increased the active carbon content compared to the untreated control, with the straw mulch to the greatest extent. In the extensively irrigated Greek soil, β-glucosidase was significantly higher in pepper plots covered with wool mulch compared to the control area without plants, but also higher compared to pepper plots not covered with wool mulch. The higher yield results measured on the mulched plots indicate that, in addition to water retention, biological activity also plays a major role in the development of yields. The effect of each mulching method on soil biological activity depends on the degradability of the mulch material, the frequency of irrigation, and the soil's water-holding capacity.

Author Biographies

  • Enikő Papdi, Hungarian University of Agriculture and Life Sciences, Department of Agro-Environmental Studies

    Enikő Papdi
    Ph.D. student
    Department of Agro-Environmental Studies
    Hungarian University of Agriculture and Life Sciences
    Villányi str. 29-43, H-1118 Budapest, Hungary
    papdi.eniko96@gmail.com

  • Andrea Veres, Hungarian University of Agriculture and Life Sciences, Department of Agro-Environmental Studies

    Andrea Veres, PhD
    student of professional engineering
    Department of Agro-Environmental Studies
    Hungarian University of Agriculture and Life Sciences
    Villányi str. 29-43, H-1118 Budapest, Hungary
    mail.veresandrea@gmail.com

  • Flórián Kovács, Hungarian University of Agriculture and Life Sciences, Department of Agro-Environmental Studies

    Flórián Kovács
    Ph.D. student
    Department of Agro-Environmental Studies
    Hungarian University of Agriculture and Life Sciences
    Villányi str. 29-43, H-1118 Budapest, Hungary
    wdfort2@gmail.com

  • Katalin Juhos, Hungarian University of Agriculture and Life Sciences, Department of Agro-Environmental Studies

    Katalin Juhos, PhD
    senior lecturer
    Department of Agro-Environmental Studies
    Hungarian University of Agriculture and Life Sciences
    Villányi str. 29-43, H-1118 Budapest, Hungary
    Juhos.Katalin@uni-mate.hu

References

ADEKALDU, E. – AMPONSAH, W. – TUFFOUR, H. O. – ADU, M. O. – AGYARE, W. A. (2021): Response of chilli pepper to different irrigation schedules and mulching technologies in semi-arid environments. Journal of Agriculture and Food Research, 6, 100222. DOI: https://doi.org/10.1016/j.jafr.2021.100222

BÉNI, Á. – LAJTHA, K. – KOZMA, J. – FEKETE, I. (2017): Application of a Stir Bar Sorptive Extraction sample preparation method with HPLC for soil fungal biomass determination in soils from a detrital manipulation study. Journal of Microbiological Methods 136, 1–5. DOI: https://doi.org/10.1016/j.mimet.2017.02.009

BIRÓ B. (2002): Talaj és rhizobiológiai eszközökkel a fenntartható növénytermesztés és környezetminőség szolgálatában. Acta Agronom. Hung. 50:77–85.

BOROWIK, A., – WYSZKOWSKA, J. (2016): Soil moisture as a factor affecting the microbiological and biochemical activity of soil. Plant, Soil and Environment, 62(6), 250–255. DOI: https://doi.org/10.17221/158/2016-PSE

BUTCARU, A. C. – F. STĂNICĂ – R. MADJAR (2017): Influence of ameliorative plants and mulch on some soil agrochemical characteristics in an organic edible rose crop. Scientific Papers. Series B, Horticulture 61: 101–106.

BUTCARU, A. C. – POMOHACI, C. – MADJAR, R. – MIHAI, C. A. – STĂNICĂ, F. (2020): Influences Between Soil Microbiological and Agrochemical Parameters in an Organic Edible Rose Plantation. Bulletin of the University of Agricultural Sciences & Veterinary Medicine Cluj-Napoca. Horticulture, 77(1).

CHAKRABORTY, D. – NAGARAJAN, S. – AGGARWAL, P. – GUPTA, V. K. – TOMAR, R. K., GARG, R. N. – KALRA, N. (2008): Effect of mulching on soil and plant water status, and the growth and yield of wheat (Triticum aestivum L.) in a semi-arid environment. Agricultural water management, 95(12), 1323–1334. DOI: https://doi.org/10.1016/j.agwat.2008.06.001

CINCINNATI, O.H. – O'BRIANT, M. – CHARLTON-PERKINS, K. (2012): Mulching with wool: opportunities to increase production and plant viability against pest damage. Završno izvješće prokekta FNC10-797.

CSERNI, I. – HÜVELY, A. – PETŐ, J. (2019): Gumós zeller (Apium graveolens convar. rapaceum) kálium trágyázási kísérlet= Potassium Fertilizer Experiment of Celery (Apium graveolens convar. rapaceum). GRADUS, 6(2), 116–121.

DEMETER, I. – MAKÁDI, M. – ARANYOS, T. – FERENCZY, A. – POSTA, K. (2013): Az ökológiai és konvencionális művelés alá eső nyírségi talajok mikrobiológiai és talajkémiai vizsgálatai. Tájökológiai Lapok, 11(2), 311–319.

FEKETE I. – BERKI I., LAJTHA K. – TRUMBORE S. – FRANCIOSO O. – GIOACCHINI P. – MONTECCHIO D. – VÁRBÍRÓ G. – BÉNI Á. – MAKÁDI M. – DEMETER I. – MADARÁSZ B. – JUHOS K. – KOTROCZÓ ZS. (2021): How will a drier climate change carbon sequestration in soils of the deciduous forests of Central Europe? Biogeochemistry 152: 13–32. DOI: https://doi.org/10.1007/s10533-020-00728-w

DÖRING, T. F. – BRANDT, M. – HEß, J. – FINCKH, M. R. – SAUCKE, H. (2005): Effects of straw mulch on soil nitrate dynamics, weeds, yield and soil erosion in organically grown potatoes. Field crops research, 94 (2-3), 238–249 DOI: https://doi.org/10.1016/j.fcr.2005.01.006

GARTON, W. – VERLINDEN, S. – CONNEWAY, R. (2013). Waste Wool, Cocoa Hulls, and Clover as Organic Mulch Alternatives in Tomato Production. In Hortscience (Vol. 48, No. 9, pp. S319-S320). 113 S West St, Ste 200, Alexandria, Va 22314–2851 Usa: Amer Soc Horticultural Science.

GHOSH, S. K. – BAIRAGI, S. – BHATTACHARYA, R. – MONDAL, M. M. (2016). An overview on test standards for evaluation of jute agrotextiles. American Journal of Engineering Research, 5(2), 49–53.

HOOVER, E. E. (2000): Bio-based weed control in strawberries using sheep wool mulch, canola mulch, and canola green manure. Minnesota Department of Agriculture

HUANG, Y. – CHEN, L. – FU, B. – HUANG, Z. – GONG, J. (2005): The wheat yields and water-use efficiency in the Loess Plateau: straw mulch and irrigation effects. Agricultural water management, 72(3), 209–222. DOI: https://doi.org/10.1016/j.agwat.2004.09.012

JAKAB G. – KERTÉSZ Á. – MADARÁSZ B. – RONCZYK L. – SZALAI Z. (2010): Az erózió és a domborzat kapcsolata szántóföldön, a tolerálható talajveszteség tükrében. Tájökológiai Lapok / Journal of Landscape Ecology 8, 35–45.

KADER, M. A. – SENGE, M. – MOJID, M. A. – ITO, K. (2017): Recent advances in mulching materials and methods for modifying soil environment. Soil and Tillage Research, 168, 155–166. DOI: https://doi.org/10.1016/j.still.2017.01.001

KADER, M. A. – SENGE, M. – MOJID, M. A. – NAKAMURA, K. (2017): Mulching type-induced soil moisture and temperature regimes and water use efficiency of soybean under rain-fed condition in central Japan. International Soil and Water Conservation Research, 5(4), 302–308. DOI: https://doi.org/10.1016/j.iswcr.2017.08.001

KERTÉSZ Á. – JAKAB G. – MADARÁSZ B. – TÓTH A., SZALAI Z. (2012): Geotextíliák alkalmazása a talajpusztulás megfékezésére Magyarországon. Természetföldrajzi kutatások Magyarországon a XXI. század elején, 67–80p.

KOCSIS T. – WASS-MATICS H. –KOTROCZÓ ZS. – BIRÓ B. (2015): A bioszén kedvező hatása a talaj pszikrofil- és mezofil csíraszámára. A hulladékgazdálkodás legújabb fejlesztési lehetőségei c. konferencia kötete 63–69.

KOCSIS, T. – RINGER, M. – BIRÓ, B. (2022): Characteristics and Applications of Biochar in Soil–Plant Systems: A Short Review of Benefits and Potential Drawbacks. Applied Sciences, 12(8), 4051. DOI: https://doi.org/10.3390/app12084051

KOTROCZÓ, Z. – VERES, Z. – FEKETE, I. – KRAKOMPERGER, Z. – TÓTH, J. A. – LAJTHA, K. – TÓTHMÉRÉSZ, B. (2014): Soil enzyme activity in response to long-term organic matter manipulation. Soil Biology and Biochemistry, 70, 237–243. DOI: https://doi.org/10.1016/j.soilbio.2013.12.028

KOTROCZÓ ZS., FEKETE I. (2020): Significance of soil respiration from biological activity in the degradation processes of different types of organic matter. DRC Sustainable Future: Journal of Environment, Agriculture, and Energy 1: 171–179. DOI: https://doi.org/10.37281/DRCSF/1.2.10

KOTROCZÓ ZS. – JUHOS K. – BIRÓ B. – KOCSIS T. – PABAR S.A. –VARGA CS. – FEKETE I. (2020): Effect of Detritus Manipulation on Different Organic Matter Decompositions in Temperate Deciduous Forest Soils. Forests, 11: 675. DOI: https://doi.org/10.3390/f11060675

KOVÁCS B. – KOTROCZÓ ZS. – KOCSIS L. – BIRÓ B. (2020): Potentials of indoor lettuce production in natural forest soil at limited watering. Journal of Central European Agriculture, 21(3): 531–536. DOI: https://doi.org/10.5513/JCEA01/21.3.2897

LAL, B. – SHARMA, S. C. – MEENA, R. L. – SARKAR, S. – SAHOO, A. – BALAI, R. C. – MEENA, B. P. (2020): Utilization of byproducts of sheep farming as organic fertilizer for improving soil health and productivity of barley forage. Journal of Environmental Management, 269, 110765. DOI: https://doi.org/10.1016/j.jenvman.2020.110765

LI, J. – LI, M. – GAO, X. – FANG, F. (2018): Corn straw mulching affects Parthenium hysterophorus and rhizosphere organisms. Crop Protection, 113, 90–96. DOI: https://doi.org/10.1016/j.cropro.2018.08.002

LI, S. – ZHANG, S. – PU, Y. – LI, T. – XU, X. – JIA, Y. – GONG, G. (2016): Dynamics of soil labile organic carbon fractions and C-cycle enzyme activities under straw mulch in Chengdu Plain. Soil and Tillage research, 155, 289–297. DOI:https://doi.org/10.1016/j.still.2015.07.019

MADARÁSZ B. – JAKAB G. – SZALAI Z. – JUHOS K. – KOTROCZÓ ZS. – TÓTH A. – LADÁNYI M. (2021): Long-term effects of conservation tillage on soil erosion in Central Europe: A random forest-based approach. Soil & Tillage Research 209, 104959. DOI: https://doi.org/10.1016/j.still.2021.104959

MARCZAK, D. – LEJCUŚ, K. – KULCZYCKI, G. – MISIEWICZ, J. (2022): Towards circular economy: Sustainable soil additives from natural waste fibres to improve water retention and soil fertility. Science of the Total Environment, 844, 157169. DOI: https://doi.org/10.1016/j.scitotenv.2022.157169

MANNA, K. –KUNDU, M. C. – SAHA, B. – GHOSH, G. K. (2018): Effect of nonwoven jute agrotextile mulch on soil health and productivity of broccoli (Brassica oleracea L.) in lateritic soil. Environmental monitoring and assessment, 190(2), 1–10. DOI: https://doi.org/10.1007/s10661-017-6452-y

MEZŐSI, G. – BATA, T. – BLANKA, V. – LADÁNYI, Z. (2017): A klímaváltozás hatása a környezeti veszélyekre az Alföldön. Földrajzi Közlemények, 141(1), 60–70.

NGOSONG, C. – OKOLLE, J. N. – TENING, A. S. (2019). Mulching: A sustainable option to improve soil health. Soil fertility management for sustainable development, 231–249.

PARMAR, H. N. – POLARA, N. D. – VIRADIYA, R. R. (2013): Effect of mulching material on growth, yield and quality of watermelon (Citrullus lanatus Thunb) Cv. Kiran. Universal Journal of Agricultural Research, 1(2), 30–37. DOI: https://doi.org/ 10.13189/ujar.2013.010203

R CORE TEAM. 2018. R: A language and environment for statistical computing. Retrieved from http://www.R-project .org/

SINSABAUGH, R. L. – KLUG, M. J. – YEAGER, P. E. (1999): Characterizing Soil Microbial. Standard soil methods for long-term ecological research, 318.

SHARMA, N. – ALLARDYCE, B. – RAJKHOWA, R. – ADHOLEYA, A. – AGRAWAL, R. (2022): A Substantial Role of Agro-Textiles in Agricultural Applications. Frontiers in Plant Science, 13. DOI: https://doi.org/10.3389/fpls.2022.895740

SHEN, J. Y. – ZHAO, D. D. – HAN, H. F. – ZHOU, X. B. – LI, Q. Q. (2012): Effects of straw mulching on water consumption characteristics and yield of different types of summer maize plants. Plant, Soil and Environment, 58(4), 161–166.

SZARKA, G. É. – KOLLAR, J. – MOSNÁČEK, J. – IVÁN, B. (2015): Polimerek a talaj felett és alatt: korszerű környezetbarát polimerek. Magyar Kémikusok Lapja, 70, 7–8.

WANG, Y. – HUANG, Q. – LIU, C. – DING, Y. – LIU, L. – TIAN, Y. – ZHAO, Z. (2020): Mulching practices alter soil microbial functional diversity and benefit to soil quality in orchards on the Loess Plateau. Journal of Environmental Management, 271, 110985. DOI: https://doi.org/10.1016/j.jenvman.2020.110985

WEIL, R. R. – ISLAM, K. R. – STINE, M. A. – GRUVER, J. B. – SAMSON-LIEBIG, S. E. (2003): Estimating active carbon for soil quality assessment: A simplified method for laboratory and field use. American Journal of Alternative Agriculture, 18(1), 3–17. DOI: https://doi.org/ 10.1079/AJAA200228

WICKHAM, H. – FRANCOIS, R. (2015): dplyr: A grammar of data manipulation.

YAN, N. – MARSCHNER, P. – CAO, W. – ZUO, C. – QIN, W. (2015): Influence of salinity and water content on soil microorganisms. International soil and water conservation Research, 3(4), 316–323. DOI: https://doi.org/10.1016/j.iswcr.2015.11.003

YU, J. G. – LI, H. X. – CHEN, X. Y. – HU, F. (2007): Effects of straw application and earthworm inoculation on soil labile organic carbon. Ying Yong Sheng tai xue bao= The Journal of Applied Ecology, 18(4), 818–824.

Downloads

Published

2022-12-15

How to Cite

How Different Mulch Materials Regulate Soil Moisture and Microbiological Activity?. (2022). Journal of Central European Green Innovation, 10(Suppl 3), 26-38. https://doi.org/10.33038/jcegi.3560