Range Expansion and Invasive Capacity of the Wing Di- and Polymorphic Insects: A Short Review

Szerzők

  • Gidó Zsolt Hungarian University of Agriculture and Life Sciences Department of Environmental Sustainability

DOI:

https://doi.org/10.33038/jcegi.3473

Kulcsszavak:

wing polymorphism, wing dimorphism, insects, range expansion, dispersal

Absztrakt

In this review article the invasive potential of wing dimorphic and polymorphic insects is discussed by presenting two case studies and overviewing the general knowledge of the dispersal abilities of these insects. Flying morphs of the wing dimorphic rice planthoppers Nilaparvata lugens and Sogatella furcifera continuously re-invade the rice fields in Japan and Northern China, where subsequent generations of dimorphic populations build up, causing several economic damages. The rapid range expansion of the wing dimorphic bush cricket Metrioptera roeselii in Central and Northern Europe in the 2000s was documented and extensively studied. These case studies are analysed, and the general relation of wing dimorphism and polymorphism and invasive potential is briefly discussed using the extensive knowledge on the wing dimorphism and polymorphism present in different insect orders.

Információk a szerzőről

  • Gidó Zsolt, Hungarian University of Agriculture and Life Sciences Department of Environmental Sustainability

    Dr. Zsolt GIDÓ, PhD
    assistant professor
    Hungarian University of Agriculture and Life Sciences
    Department of Environmental Sustainability
    Institute of Environmental Sciences
    H-8360, Keszthely, Deák Ferenc utca 16.
    gido.zsolt@uni-mate.hu

Hivatkozások

AHLROTH, P. – ALATALO, R.V. – SUHONEN, J. (2010): Reduced dispersal propensity in the wingless waterstrider Aquarius najas in a highly fragmented landscape. Oecologia, 162, 323–330. DOI: https://doi.org/10.1007/s00442-009-1457-z

ANDERSEN, N. M. (2000): The evolution of dispersal dimorphism and other life history traits in water striders (Hem. Gerridae). Entomological Science, 3, 187–199. Conference paper.

BAO, H. – LIU, S. – GU, J. – WANG, X. – LIU, Z. (2009): Sublethal effects of four insecticides on the reproduction and wing formation of brown planthopper, Nilaparvata lugens. Pest Management Science, 65, 170–174. DOI: http://dx.doi.org/10.1002/ps.1664

BECKMANN, C.B. – PURSE, B.V. – ROY, D.B. – ROY, H.E. – SUTTON, P.G. – THOMAS, C.D. (2015): Two Species with an Unusual Combination of Traits Dominate Responses of British Grasshoppers and Crickets to Environmental Change. PLoS ONE, 10, e0130488. DOI: http://dx.doi.org/10.1371/journal.pone.0130488

BERGGREN, A. (2001): Colonization success in Roesel’s bush-cricket Metrioptera roeseliii: The effects of propagule size. Ecology, 82, 274–280. DOI: http://dx.doi.org/10.2307/2680102

BERGGREN, A. – CARLSON, A. – KIINDVALL, O. (2001): The effect of landscape composition on colonization success, growth rate and dispersal in introduced bush-crickets Metrioptera roeseliii. Journal of Animal Ecology, 70, 663–670. DOI: http://dx.doi.org/10.1046/j.1365-2656.2001.00525.x

BRAENDLE, C. – DAVIS, G. K. – BRISSON, J. A. – STERN, D. L. (2006): Wing dimorphism in aphids. Heredity, 97, 192–199. DOI: http://dx.doi.org/10.1038/sj.hdy.6800863

BRUNZEL, S. (2002): Increased dispersal rates, distances in density-stressed bush crickets (Metrioptera brachyptera (L., 1761) (Saltatoria: Tettigoniidae). Beitrage zur Entomologie, 52, 241–253. DOI: http://dx.doi.org/10.21248/contrib.entomol.52.1.241-253

CASSEL-LUNDHAGEN, A. – KANUCH, P. – LOW, M. – BERGRENN, A. (2011): Limited gene flow may enhance adaptation to local optima in isolated populations of the Roesel’s bush cricket (Metrioptera roeselii). Journal of Evolutionary Biology, 2, 381–390. DOI: http://dx.doi.org/10.1111/j.1420-9101.2010.02174.x

DEN BOER, P. J. – VAN HUIZEN, T. H. P. – DEN BOER-DAANJE, W. – AUKEMA B. – DEN BIEMAN, C. F. M. (1980): Wing polymorphism and dimorphism in ground beetles as stages in an evolutionary process (Coleoptera: Carabidae). Entomologia Generalis, 6, 107–134. DOI: http://dx.doi.org/10.1127/entom.gen/6/1980/107

DENNO, R. F. – RODERICK, G. K. – PETERSON, M. A. – HUBERTY, A. F. – DOBEL, H. G. – EUBANKS, M. D. – LOSEY, J. E. – LONGOLETTO, G. A., (1996): Habitat Persistence Underlies Intraspecific Variation in the Dispersal Strategies of Planthoppers (1996). Biology Faculty and Staff Publications, 45. DOI: https://doi.org/https://cedar.wwu.edu/biology_facpubs/45

FUJISAKI, K. (1989): Morphometric Traits of Adults of the Oriental Chinch Bug, Cavelerius saccharivorus OKAJIMA (Heteroptera : Lygaeidae), in Relation to Its Wing Polymorphism. Applied Entomology and.Zoology, 24, 20–28. DOI: https://doi.org/10.1303/aez.24.20

GAO, X. – FU, Y. – AJAYI, O.E. – GUO, D. – ZHANG, L. – WU, Q. (2019): Identification of genes underlying phenotypic plasticity of wing size via insulin signaling pathway by network-based analysis in Sogatella furcifera. BMC Genomics, 20, 396. DOI: https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-019-5793-z

GARDINER, T. (2009): Macropterism of Roesel’s bushcricket Metrioptera roeselii in relation to climate change and landscape structure in eastern England. Journal of Orthoptera Research, 12, 95–102. DOI: http://dx.doi.org/10.1665/034.018.0110

GUERRA, P. A. (2011): Evaluating the life-history trade-off between dispersal capability and reproduction in wing dimorphic insects: a meta-analysis. Biological Reviews of the Cambridge Philosophical Society, 86, 813–835. DOI: http://dx.doi.org/10.1111/j.1469-185X.2010.00172.x

HARRISON, R. G. (1980). Dispersal polymorphism in insects. Annual Reviews of Ecology and Systematics, 11, 95–118. DOI: http://dx.doi.org/10.1146/annurev.es.11.110180.000523

HARTFELDER, K. – EMLEN, D. J. (2012): Endocrine Control of Insect Polyphenism. Insect Endocrinology, 11, 464–522. DOI: http://dx.doi.org/10.1016/B0-44-451924-6/00045-4

HELMS, J.A. IV – GODFREY, A. (2016) Dispersal Polymorphisms in Invasive Fire Ants. PLoS ONE, 11, e0153955. DOI: https://doi.org/10.1371/journal.pone.0153955

HOCHKIRCH, A. – DAMERAU, M. (2009): Rapid range expansion of a wing-dimorphic bush-cricket after the 2003 climatic anomaly. Biological Journal of the Linnean Society, 97, 118–127. DOI: http://dx.doi.org/10.1111/j.1095-8312.2008.01199.x

IWANAGA, K. -TOJO, S. (1986): Effects of juvenile hormone and rearing density on wing dimorphism and oöcyte development in the brown planthopper, Nilaparvata lugens. Journal of Insect Physiology, 32, 585–590. DOI: https://doi.org/10.1016/0022-1910(86)90076-4

IWANAGA, K. – TOJO, S. – NAGATA, T. (1985): Immigration of the brown planthopper, Nilaparvata lugens, exhibiting various responses to density in relation to wing morphism. Entomologia Experimentalis et Applicata, 38. DOI: http://dx.doi.org/10.1111/j.1570-7458.1985.tb03505.x

JOHNSON, C. G. (1969): Migration and dispersal of insects by flight. London, 763 pp.

JI, J. – HUANGFU, N. – LUO, J. – GAO, X. – NIU, L. – ZHANG, S. – CU, J. (2021): Insights into wing dimorphism in worldwide agricultural pest and host-alternating aphid Aphis gossypii. Journal of Cotton Research 4, 5. DOI: https://doi.org/10.1186/s42397-021-00080-w

KANUCH, P. – BERGGREN, A. – CASSEL-LUNDHAGEN, A. (2013): Colonization history of Metrioptera roeselii in northern Europe indicates human-mediated dispersal. Journal of Biogeography, 40, 977–987. DOI: http://dx.doi.org/10.1111/jbi.12048

KANUCH, P. – BERGGREN, A. – CASSEL-LUNDHAGEN, A. (2014): Genetic diversity of a successful colonizer: isolated populations of Metrioptera roeselii regain variation at an unusually rapid rate. Ecology and Evolution, 4, 1117–1126. DOI: http://dx.doi.org/10.1002/ece3.1005

KISHIMOTO, R. (1971): Long Distance Migration of Planthoppers, Sogatella Furcifera and Nilaparvata Lugens. Japan International Research Center for Agricultural Sciences 5, 201–216. DOI: https://doi.org/ tars5-_201-216.pdf (jircas.go.jp)

KINDVALL, O. – VESBY, K. – BERGGREN, A. – HARTMAN, G. (1998): Individual mobility prevents an Allee effect in sparse populations of the bush cricket Metrioptera roeselii: an experimental study. Oikos, 81, 449–457. DOI: http://dx.doi.org/10.2307/3546766

KLAUSNER, E. – MILLER, E. R. – DINGLE, H. (1981): Genetics of brachyptery in a lygaeid bug island population. Journal of Heredity, 72, 288–289. DOI: http://dx.doi.org/10.1093/oxfordjournals.jhered.a109502

KLEUKERS, R.M. – DECLEER, K. – HAES, E.C.M. – KOLSHORN, P. – THOMAS, B. (1996): The recent expansion of Conocephalus discolor (Thunberg) (Orthoptera: Tettigoniidae) in Western Europe. Entomologist's Gazette, 47:37–49.

LIANG, Z.Q. – SONG, S.Y. – LIANG, S.K. – WANG, F.H. (2016): Analysis of Differential Proteins in Two Wing-Type Females of Sogatella furcifera (Hemiptera: Delphacidae). Journal of Insect Science16(1):35. DOI: http://dx.doi.org/10.1093/jisesa/iew024

LIN, X. – XU, Y. – JIANG, J. – LAVINE, M. – LAVINE, L. C. (2018): Host quality induces phenotypic plasticity in a wing polyphenic insect. Proceedings of the National Academy of Sciences, 115, 7563–7568. DOI: http://dx.doi.org/10.1073/pnas.1721473115

MATALIN, A. V. (2003): Variations in flight ability with sex and age in ground beetles (Coleoptera, Carabidae) of south-western Moldova. Pedobiologia 47, 311–319. DOI: http://dx.doi.org/10.1078/0031-4056-00195

MATSAMURA, M. (1996): Genetic analysis of a threshold trait: density-dependent wing dimorphism in Sogatella furcifera (Horváth) (Hemiptera: Delphacidae), the whitebacked planthopper. Heredity, 76, 229–237 DOI: http://dx.doi.org/10.1038/hdy.1996.36

MATSAMURA, M. (1997): Correlated responses of life history traits, wing length, and flight propensity to wing-form selection in the whitebacked planthopper, Sogatella furcifera (Horvath) (Hemiptera: Delphacidae). Applied Entomology and Zoology 32. (3): 437–445. DOI: http://dx.doi.org/10.1303/aez.32.437

NISHIDE, Y. – TANAKA, S. (2013): The occurrence in the migratory locust, Locusta migratoria (Orthoptera: Acrididae), of a short-winged morph with no obvious fitness advantages over the long-winged morph. European Journal of Entomology, 110, 577–583, DOI: http://dx.doi.org/10.14411/eje.2013.078

OGAWA, K. – MIURA, T. (2014): Aphid polyphenisms: trans-generational developmental regulation through viviparity. Frontiers in Physiology, 5, 1. DOI: http://dx.doi.org/10.3389/fphys.2014.00001

OGAWA, K. – ISHIKAWA, A. – KANABE, T. – AKIMOTO, S. – MIURA, T. (2012): Male-specific flight apparatus development in Acyrthosiphon pisum (Aphididae, Hemiptera, Insecta): comparison with female wing polyphenism. Zoomorphology, 131, 197–207. DOI: https://doi.org/10.1007/s00435-012-0154-3

PEŇA, J. E. (2013): Potential invasive pests of agricultural crops. Vol. 3. CABI, 440 pp.

PENER, M. P. – SIMPSON, S. J. (2009): Locust Phase Polyphenism: An Update. Advances in Insect Physiology 36: 1–272. DOI: http://dx.doi.org/10.1016/S0065-2806(08)36001-9

PONIATOWSKI D. – FARTMANN, T. (2009): Experimental evidence for density-determined wing dimorphism in two bushcrickets (Ensifera: Tettigoniidae). — Europe J. Entomol. 106: 599–605. DOI: http://dx.doi.org/10.14411/eje.2009.075

PONIATOWSKI, D. – FARTMANN, T. (2011a) Does wing dimorphism affect mobility in Metrioptera roeselii? European Journal of Entomology, 108, 409–415. DOI: http://dx.doi.org/10.14411/eje.2011.052

PONIATOWSKI, D. – FARTMANN, T. (2011b): Weather-driven changes in population density determine wing dimorphism in a bush-cricket species. Agriculture, Ecosystems & Environment 145(1), 5–9. DOI: http://dx.doi.org/10.1016/j.agee.2010.10.006

PUSHKAR, T. I. (2009): Tetrix tuerki (Orthoptera, Tetrigidae): Distribution in Ukraine, ecological characteristic and features of biology. Vestnik zoologii, 43(1). DOI: http://dx.doi.org/10.2478/v10058-009-0001-2

RENAULT, D. (2020): A Review on Dispersal Polymorphism in Wing-Dimorphic, Mono-Morphic, Wingless, and Range-Expanding Insects, and Experimental Designs for Sorting out Resident and Disperser Phenotypes. Insects, 11(4), 214. DOI: 10.3390/insects11040214

ROFF, D. A. (1986): The evolution of wing dimorphism in insects. Evolution, 40, 1009–1020. DOI: http://dx.doi.org/10.1111/j.1558-5646.1986.tb00568.x

ROFF, D. A. – FAIRBAIRN, D. J. (1991): Wing dimorphisms and the evolution of migratory polymorphisms among the Insecta. Integrative and Comparatory Biology, 31, 243–251. DOI: http://dx.doi.org/10.1093/icb/31.1.243

SAXENA, R. C. – OKECH, S. H. – LIQUIDO, N. J. (1981): Wing Morphism in the Brown Planthopper, Nilaparvata Lugens. International Journal of Tropical Insect Science 1, 343–348. DOI: http://dx.doi.org/10.1017/S1742758400000631

SIMMONS A.D. – THOMAS C.D. (2004): Changes in dispersal during species range expansions. The American Naturalist 164, 378–395. DOI: http://dx.doi.org/10.1086/423430

SOCHA, R. (1993): Pyrrhocoris apterus (Heteroptera): a model species: a review. European Journal of Entomology 90, 241–286.

SOLBRECK, C. – ANDERSON, D.B. (1989). Wing reduction; its control and consequences in a lygaeid bug, Spilostethus pandurus. Hereditas, 111, 1–6. DOI: http://dx.doi.org/10.1111/j.1601-5223.1989.tb00368.x

SZANYI, A. – NAGY, A. – RÁCZ, I.A. – VARGA, Z. (2014): Contrasting patterns of macroptery in Roeselís bush cricket Metrioptera roeselii (Orthoptera, Ensifera). Estonian Journal of Ecology, 63, 4. DOI: https://doi.org/10.3176/eco.2014.4.07

VENN, S. (2007): Morphological responses to disturbance in wing-polymorphic carabid species (Coleoptera: Carabidae) of managed urban grasslands. Baltic Journal of Coleopterology 7, 51–59.

VENN, S. (2016): To fly or not to fly: Factors influencing the flight capacity of carabid beetles (Coleoptera: Carabidae). European Journal of Entomology, 113, 587–600. DOI: http://dx.doi.org/10.14411/eje.2016.079

VÄPSALÄINEN, K. (1978): Wing dimorphism and diapause in Gerris: determination and adaptive significance. Evolution of Insect Migration and Diapause, 218–253. DOI: http://dx.doi.org/10.1007/978-1-4615-6941-1_10

WATANABE, T. – MATSUMURA, M. – OTUKA, A. (2009): Recent occurrences of long-distance migratory planthoppers and factors causing outbreaks in Japan. Planthoppers: New Threats to the Sustainability of Intensive Rice Production Systems in Asia. 179–189.

WISSMANN, J. – SCHIELZETH, H. – FARTMANN, T. (2009): Landscape-scale expansion of Roesel’s bush-cricket Metrioptera roeselii at the North-western range limit in Central Europe (Orthoptera: Tettigoniidae). Entomologia Generalis 31, 317–326. DOI: https://doi.org/10.1127/entom.gen/31/2008/317

WU, G.R. – YU, X. P. – TAO, L.Y. – REN, Z. J. (1994): Wing dimorphism and migration in the brown planthopper, Nilaparvata lugens Stål. In: Insect life-cycle polymorphism pp. 263–275. DOI: https://doi.org/10.1007/978-94-017-1888-2_13

YU, J.-L. – AN, Z. F. – LIU, X. (2014): Wingless gene cloning and its role in manipulating the wing dimorphism in the white-backed planthopper, Sogatella furcifera. BMC molecular biology. DOI: https://doi.org/10.1186/1471-2199-15-20

ZERA, A. J. (2004): The endocrine regulation of wing polymorphism: State of the art, recent surprises, and future directions. Integrative and Comarative. Biology, 43: 605–606. DOI: https://doi.org/10.1093/icb/43.5.607

ZERA A. J. – DENNO R. F. (1997): Physiology and ecology of dispersal polymorphism in insects. Annual Review of Ecology Evolution and Systematics. 42, 207–230. DOI: https://doi.org/10.1146/annurev.ento.42.1.207

ZHANG, C. – MAO, M.S. – LIU, X.D. (2022): Relative contribution of genetic and environmental factors to determination of wing morphs of the brown planthopper Nilaparvata lugens. Insect Science. Epub ahead of print. DOI: http://dx.doi.org/10.1111/1744-7917.13037

Letöltések

Megjelent

2022-12-06

Folyóirat szám

Rovat

Cikk szövege

Hogyan kell idézni

Range Expansion and Invasive Capacity of the Wing Di- and Polymorphic Insects: A Short Review. (2022). Journal of Central European Green Innovation, 10(2), 51-62. https://doi.org/10.33038/jcegi.3473