The Effect of Expanding and Granulation Used During Feed Production on Poultry and Swinw Compound Feed
Keywords:
water-soluble fibers, water-insoluble fibers, feed production, expanding, granulationAbstract
During feed production, the feed raw materials that make up the feed mixture undergo various thermal and mechanical treatments, however, we do not consider these effects as influencing factors when formulating. In our experiment, we examined 19 compound feed with respect to insoluble (IDF), soluble (SDFP), and neutral detergent fiber (NDF). In the plant, the samples were taken after the mixer, after the expander, and after the press, so a total of 57 mixed feed samples were examined. We determined the amount of crude fiber, the IDF and SDFP content using an analytical method. We examined the fiber fractions using the Van Soest method. Depending on the production technology, significant differences were observed regarding IDF, SDFP, and raw fiber. The IDF content of all feed mixtures was 13.24% in the pellets, which significantly decreased (P<0.05) to 12% in the pellets. The SDFP content for all feed mixtures was 1.21% in the expanded mixture, and only 0.94% in the pellets (P<0.01). The average crude fiber content, calculated taking into account all compound feed, was statistically verifiable (P<0.05) different between the dry mixture (4.44 %) and pellets(4.52 %), as well as the expanded mixture (4.46 %) and pellets (4.52 %). From the results, we concluded that the thermal and mechanical treatments significantly reduce the soluble and insoluble fiber content, which should be taken into account during formulation. The decreasing trend of the soluble fiber content can be evaluated as a positive thing, since the anti-nutritive effect in the feed ingredients can be reduced, there by improving feed sales.
References
Abdollahi Mr. R., Ravindran V., Svihus B. 2013. Pelleting of broiler diets: An overview with emphasis on pellet quality and nutritional value. Animal Feed Science and Technology. 179 (1–4), 1–23.
Babinszky L., Halas V. (szerk.) 2019. Innovatív takarmányozás. Akadémiai Kiadó, Budapest, 995 p. https://doi.org/10.1556/9789634540571
Boroojeni F. G., Svihus B., Reichenbach H., Zentek J. 2016. The effects of hydrothermal processing on feed hygiene, nutrient availability, intestinal microbiota and morphology in poultry—A review. Animal Feed Schience and Technology, 220, 187–215. https://doi.org/10.1016/j.anifeedsci.2016.07.010
Chen T., Chen D., Tian G., Zheng P., Mao X., Yu J., He J., Huang Z., Luo Y., Luo J., Yu B. 2020. Effects of soluble and insoluble dietary fiber supplementation on growth performance, nutrient digestibility, intestinal microbe and barrier function in weaning piglet. Animal Feed Science and Technology. 260, 114335. https://doi.org/10.1016/j.anifeedsci.2019.114335
Erdélyi, I. 2007. Az expandálás hatása a pulykahizlaló takarmányok gyártásától felhasználásáig. Doktori disszertáció, Debreceni Egyetem Agrártudományi Centrum, Debrecen
Yavuz 2017. Heat applications in feed and food processing. Proceedings of 72nd The IRES International Conference, Mecca, Saudi Arabia 10 p.; 14 p.
Liu T., Zhen X., Lei H., Li J., Vang J., Gou D., Zhano J. 2024. Investigating the physicochemical characteristics and importance of insoluble dietary fiber extracted from legumes: An in-depth study on its biological functions. Food Chemistry: X, 22. 101424 https://doi.org/10.1016/j.fochx.2024.101424
Magyar Takarmánykódex 2004. Gazdasági állatok táplálóanyag–szükséglete, takarmányok kémiai összetétele és mikotoxin határértékek a takarmánykeverékekben (II–III. kötet) Budapest, OMMI
Megazyme 2013. Integrated Total dietary fiber. Megazyme International, 24 p.
Sarikhan M., Shahryar H. A., Gholizadeh B., Hosseinzadeh M., Beheshti B., Mahmoodnejad A. 2010. Effects of Insoluble Fiber on Growth Performance, Carcass Traits and Ileum Morphological Parameters on Broiler Chick Males. International Journal of Agriculture & Biology, 12 (4) 1560–8530.
Zhang W., Li D., Liu L., Zang J., Duan Q., Yang W., Zhang L 2013. The effects of dietary fiber level on nutrient digestibility in growing pigs. Journal of Animal Science and Biotechnology, 4 (17). https://doi.org/10.1186/2049-1891-4-17
Zhuo Y., Shi X., Lv G., Hua L., Zhou P., Che L., Fang Z., Lin Y., Xu S., Li J., Feng B., Wu D. 2017. Beneficial effects of dietary soluble fiber supplementation in replacement gilts: Pubertal onset and subsequent performance. Animal Reproduction Science 186, pp. 11–20. https://doi.org/10.1016/j.anireprosci.2017.08.007
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Brigitta Kiss, Márta Erdélyi, Nikoletta Such, Kesete Goitom Tewelde, Károly Dublecz
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Cikkre a Creative Commons 4.0 standard licenc alábbi típusa vonatkozik: CC-BY-NC-ND-4.0. Ennek értelmében a mű szabadon másolható, terjeszthető, bemutatható és előadható, azonban nem használható fel kereskedelmi célokra (NC), továbbá nem módosítható és nem készíthető belőle átdolgozás, származékos mű (ND). A licenc alapján a szerző vagy a jogosult által meghatározott módon fel kell tüntetni a szerző nevét és a szerzői mű címét (BY).