A Botrytis cinerea extracelluláris fehérjehálózatának vizsgálata tömegspektrometriai, statisztikai és hálózatelméleti módszerekkel

Authors

  • Dorottya Szám Hungarian University of Agriculture and Life Sciences, Institute of Plant Protection, Department of Plant Protection, e-mail: szam.dorottya.reka@gmail.com (corresponding author) https://orcid.org/0009-0006-4299-8712
  • Miklós Pogány HUN-REN, Centre for Agricultural Research, Institute of Plant Protection, e-mail: pogany.miklos@agrar.mta.hu https://orcid.org/0000-0002-9887-4317
  • András Takács Hungarian University of Agriculture and Life Sciences, Institute of Plant Protection, Department of Plant Protection, e-mail: Takacs.Andras.Peter@uni-mate.hu

Keywords:

Furmint, Botrytis cinerea, extracellular proteins, scale-free networks

Abstract

Scale-free networks can be discovered in many very distant biological structures. Such a scalefree model can describe the development of cancer, the spread of the COVID-19 epidemic, the structure of some neural networks, as well as several already mapped protein-protein interaction networks. In our research, we compared the extracellular protein pattern of laboratory-grown B. cinerea on Furmint grapes in four consecutive phases of botritization in order to gain a deeper understanding of the metabolic processes responsible for noble rot. Our results indicate that the extracellular protein network of B. cinerea can be well described by the Barabási-Albert scalefree network model. We characterized the main static parameters of extracellular protein networks, such as the number of nodes and interaction relationships, the degree distribution, the average number of degrees, and the average clustering coefficient. We identified the main components of the network and the fungal proteins that are important for the protein network, and thus responsible for noble rot.

References

Albert, R., Jeong, H. and Barabási, A-L. 2000. Error and attack tolerance of complex networks. Nature. 406. 378–382.

Albert, R. 2005. Scale-free networks in cell biology. Journal of Cell Science 118(21). 4947–4957.

Andrew, X. C. and Christopher, J. 2020. Scale-free structure of cancer networks and their vulnerability to hub-directed combination therapy. https://doi.org/10.1101/2020.07.01.159657

Barabási, A-L. 2016. Network Science. Cambridge University Press.

Bollobás, B. 1979. Graph Theory: an Introductory Course. New York, Springer Verlag

Buchanan, M. 2000. Ubiquity: The Science of History, or Why the World is Simpler Than We Think. Weidenfeld & Nicolson.

Dunne, J. A. 2006. The network structure of food webs. In: Ecological Networks: Linking Structure to Dynamics in Food Webs. 27–86.

Giot, L., Bader, J. S., Brouwer, C., Chaudhuri, A., Kuang, B., Li, Y., Hao, Y. L., Ooi, C. E.,Godwin, B., Vitols, E., Vijayadamodar, G., Pochart, P., Machineni, H., Welsh, M., Kong, Y., Zerhusen, B., Malcolm, R., Varrone, Z., Collis, A., Minto. M., Burgess. S., McDaniel. L., Stimpson, E., Spriggs, F., Williams, J., Neurath, K., Ioime, N., Agee, M., Voss, E., Furtak, K., Renzulli, R., Aanensen, N., Carrolla, S., Bickelhaupt, E., Lazovatsky, Y., DaSilva, A., Zhong, J., Stanyon, C. A., Finley, Jr. R. L., White, K. P., Braverman, M., Jarvie, T., Gold, S., Leach, M., Knight, J., Shimkets, R. A., McKenna, M. P., Chant, J. and Rothberg, J. M. 2003. A protein interaction map of Drosophila melanogaster. Science. 302. 1727-1736.

Ho, Y., Gruhler, A., Heilbut, A., Bader, G. D., Moore, L., Adams, S.-L., Millar, A., Taylor, P., Bennett, K., Boutilier, K., Yang, L., Wolting, C., Donaldson, I., Schandorff, S., Shewnarane, J., Vo, M., Taggart, J., Goudreault, M., Muskat, B., Alfarano, C., Dewar, D., Lin, Z., Michalickova, K., Willems, A. R., Sassi, H., Nielsen, P. A., Rasmussen, K. J., Andersen, J. R., Johansen, L. E., Hansen, L. H., Jespersen, H., Podtelejnikov, A., Nielsen, E., Crawford, J., Poulsen, V., Sørensen, B. D., Matthiesen, J., Hendrickson, R. C., Gleeson, F., Pawson, T., Moran, M. F., Durocher, D., Mann, M., Hogue, C. W. V., Figeys, D. and Tyers, M. 2002. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature. 415. 180–183.

Jackson, R. S. 2014. Botrytis. In: Robinson, R. K.; Batt, C. A.; Patel, P. D. (szerk.) Encyclopedia of Food Microbiology. Burlington Acedemic kiadó. 288–296.

Jarvis, W. R. 1977. Botryotinia and Botrytis Species: Taxonomy, Physiology and Pathogenicity. Research Branch, Canada Department of Agriculture, Ottava, Canada.

Jeong, H. et al. 2001. Lethality and centrality in protein networks. Nature. 411. 41–42.

Liddell, H. G. and Scott, R. 1843. A Greek-English Lexicon. Oxford University Press.

Naár Z. és Szarvas J. 2012. Borászati Mikrobiológia. Eszterházy Károly Főiskola Nyomda, Eger, 196.

Parul, M. and Albert, R. 2020. Network model and analysis of the spread of Covid-19 with social distancing. Applied Network Science. 5. 100.

Wade, D. 2007. The Statistical Mechanics of Scale-free Networks.

Published

2022-01-15