Examination of earthworm abundance; biomass andcorrelations of soil organic matter in an irrigated (with river and catfish effluent water) and mulched agroforestry system
DOI:
https://doi.org/10.18380/SZIE.COLUM.2024.11.2.05Keywords:
aerobic rice, agroforestry system, irrigation, earthworms, organic mulchingAbstract
The aim of our study was to evaluate a complex agroforestry system with the intercropping of aerobic rice and the utilization of reclaimed water for sustainability and climate change adaptation. The foreseeable positive outcomes of the intercropping system could be higher yields for the arable crops, additional woody products and indirectly favourable microclimate, water conservation, increased biodiversity and wind damage reduction. In this study, a special rice-energy willow/poplar agroforestry system was used to analyze the effects of reused water irrigation and mulching on soil salinity, earthworm biomass and abundance, soil organic matter (SOM) content and weed coverage in treerow-dependent habitats. After a three-year irrigation period, we investigated the woody line (WL), the buffer zone (BZ) and the crop line (CL) habitats. In our small-scale (0.3 ha) experiment, aerobic rice production took place between poplar and willow rows. The rice cultivar and woody lines were irrigated with different doses of river water and effluent water from an intensive catfish farm. The effect of irrigation and organic mulching on earthworm abundance, biomass and species composition was also investigated. In conclusion, this study demonstrated the beneficial effects of straw mulching on reducing soil salinity and improving soil health indicators. Based on our results, significantly greater earthworm abundance (274 ind m−2) and earthworm biomass (54.0 g m−2) values were measured in WL than in BZ or CL habitats. There was no significant difference in weed coverage between the CL (0.61%) and BZ (1.91%), but weeds were significantly denser on the WL (12.3%). These findings emphasize the potential advantages of reused water irrigation, mulching, and agroforestry systems in promoting soil health and effective weed control. Further research is warranted to explore the long-term effects and scalability of these practices. Agroforestry systems have the potential to enhance soil biodiversity and microbial activity, which play crucial roles in nutrient cycling and soil health. By studying the effects of agroforestry practices on soil biology, we can provide valuable insights into the mechanisms underlying soil quality enhancement in these systems.
References
Akter, M., & Oue, H. (2018). Effect of Saline Irrigation on Accumulation of Na+, K+, Ca2+, and Mg2+ Ions in Rice Plants. Agriculture 8(10), 164. doi: https://doi.org/10.3390/agriculture8100164
Bakti, B., Bozán, C., Keserű, Z., Jancsó, M., Kolozsvári, I., Gyuricza, C., & Kun, Á. (2022). Interactions between trees, crops and pedosphere: experiences in irrigated bioenergy-agroforestry system in Hungary. In D. Spano et al. (Eds.), Euraf2022 book of abstracts (p. 115). Nuoro, Italy.
Bakti, B., Simon, B., & Gyuricza, C. (2017). Növénytáplálási kísérletek talajtani vizsgálata kedvezőtlen termőhelyen létesített fás szárú energetikai ültetvényben. In J. Kátai & Z. Sándor (Eds.), Okszerű talajhasználat – Talajvédelem (p. 327-337). Debrecen.
Beule, L., Lehtsaar, E., Rathgeb, A., & Karlovsky, P. (2019). Crop Diseases and Mycotoxin Accumulation in Temperate Agroforestry Systems. Sustainability 11(10), 2925. doi: https://doi.org/10.3390/su11102925
Cavalcante, E. S., Lacerda, C. F., Mesquita, R. O., de Melo, A. S., da Silva Ferreira, J. F., dos Santos Teixeira, A., . . . Gheyi, H. R. (2022). Supplemental Irrigation with Brackish Water Improves Carbon Assimilation and Water Use Efficiency in Maize under Tropical Dryland Conditions. Agriculture 12(4), 544. doi: https://doi.org/10.3390/agriculture12040544
Chen, Y., Wen, X., Sun, Y., Zhang, J., Wu, W., & Liao, Y. (2014). Mulching practices altered soil bacterial community structure and improved orchard productivity and apple quality after five growing seasons. Scientia Horticulturae 172(), 248-257. doi: https://doi.org/10.1016/j.scienta.2014.04.010
Clare, A., Shackley, S., Joseph, S., Hammond, J., Pan, G., & Bloom, A. (2015). Competing uses for China’s straw: the economic and carbon abatement potential of biochar. GCB Bioenergy 7(6), 1272-1282. doi: https://doi.org/10.1111/gcbb.12220
Cook, H. F., Valdes, G. S., & Lee, H. C. (2006). Mulch effects on rainfall interception, soil physical characteristics and temperature under Zea mays L. Soil and Tillage Research 91(1), 227-235. doi: https://doi.org/10.1016/j.still.2005.12.007
El-Beltagi, H. S., Basit, A., Mohamed, H. I., Ali, I., Ullah, S., Kamel, E. A. R., . . . Ghazzawy, H. S. (2022). Mulching as a Sustainable Water and Soil Saving Practice in Agriculture: A Review. Agronomy 12(8), 1881. doi: https://doi.org/10.3390/agronomy12081881
Gonzalez, G., & Zou, X. (1999). Plant and litter influences on earthworm abundance and community structure in a tropical wet forest. Biotropica 31(3), 486-493. doi: https://doi.org/10.1111/j.1744-7429.1999.tb00391.x
Gregory, J. M. (1982). Soil Cover Prediction with Various Amounts and Types of Crop Residue. Transactions of the ASAE 25(5), 1333-1337. doi: https://doi.org/10.13031/2013.33723
Gyuricza, C., Bakti, B., Benke, A., Kovács, G. P., Balla, I., & Borovics, A. (2018). Energetikai ültetvények szerepe az agrárerdészeti rendszerekben. In C. Gyuricza, A. Borovics, G. Radó, & N. Somogyi (Eds.), Agrárerdészet (p. 171-218). Gödöllő, Hungary.
Hall, D. J. M., Sudmeyer, R. A., McLernon, C. K., & Short, R. J. (2002). Characterisation of a windbreak system on the south coast of Western Australia. 3. Soil water and hydrology. Australian Journal of Experimental Agriculture 42(6), 729. doi: https://doi.org/10.1071/ea02009
Hussain, M. I., Farooq, M., Muscolo, A., & Rehman, A. (2020). Crop diversification and saline water irrigation as potential strategies to save freshwater resources and reclamation of marginal soils – a review. Environmental Science and Pollution Research 27(23), 28695-28729. doi: https://doi.org/10.1007/s11356-020-09111-6
IUSS Working Group WRB. (2022). World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. Vienna, Austria: International Union of Soil Sciences (IUSS).
Jodaugienė, D., Pupalienė, R., Sinkevičienė, A., Marcinkevičienė, A., Žebrauskaitė, K., Baltaduonytė, M., & Čepulienė, R. (2010). The influence of organic mulches on soil biological properties. Zemdirbyste-Agriculture 97(2), 33-40.
Kay, S., Crous-Duran, J., Ferreiro-Domínguez, N., García de Jalón, S., Graves, A., Moreno, G., . . . Herzog, F. (2018). Spatial similarities between European agroforestry systems and ecosystem services at the landscape scale. Agroforestry Systems 92(4), 1075-1089. doi: https://doi.org/10.1007/s10457-017-0132-3
Kolozsvári, I., Kun, Á., Jancsó, M., Bakti, B., Bozán, C., & Gyuricza, C. (2021). Utilization of Fish Farm Effluent for Irrigation Short Rotation Willow (Salix alba L.) under Lysimeter Conditions. Forests 12(4), 457. doi: https://doi.org/10.3390/f12040457
Kowalchuk, T. E., & Jong, E. d. (1995). Shelterbelts and their effect on crop yield. Canadian Journal of Soil Science 75(4), 543-550. doi: https://doi.org/10.4141/cjss95-077
Kumar, R., Ghosh, M., Kumar, S., & Prasad, M. (2020). Single Cell Metabolomics: A Future Tool to Unmask Cellular Heterogeneity and Virus-Host Interaction in Context of Emerging Viral Diseases. Frontiers in Microbiology 11(), 1152. doi: https://doi.org/10.3389/fmicb.2020.01152
Kun, Á., Bozán, C., Oncsik, M. B., & Barta, K. (2017). Evaluating of wastewater irrigation in lysimeter experiment through energy willow yields and soil sodicity. Carpathian Journal of Earth and Environmental Sciences 13(1), 77-84. doi: https://doi.org/10.26471/cjees/2018/013/008
Kun, Á., Simon, B., Zalai, M., Kolozsvári, I., Bozán, C., Jancsó, M., . . . Bakti, B. (2023). Effect of Mulching on Soil Quality in an Agroforestry System Irrigated with Reused Water. Agronomy 13(6), 1622. doi: https://doi.org/10.3390/agronomy13061622
Liu, B., Wang, S., Kong, X., Liu, X., & Sun, H. (2019). Modeling and assessing feasibility of long-term brackish water irrigation in vertically homogeneous and heterogeneous cultivated lowland in the North China Plain. Agricultural Water Management 211(), 98-110. doi: https://doi.org/10.1016/j.agwat.2018.09.030
Németh, I., & Sárfalvi, B. (1998). Gyomfelvételezési módszerek értékelése összehasonlító vizsgálatok alapján. Növényvédelem 34(1), 15-22.
Norgrove, L., Csuzdi, C., & Hauser, S. (2011). Effects of cropping and tree density on earthworm community composition and densities in central Cameroon. Applied Soil Ecology 49(), 268-271. doi: https://doi.org/10.1016/j.apsoil.2011.05.008
Pardon, P., Reubens, B., Mertens, J., Verheyen, K., De Frenne, P., De Smet, G., . . . Reheul, D. (2018). Effects of temperate agroforestry on yield and quality of different arable intercrops. Agricultural Systems 166(), 135-151. doi: https://doi.org/10.1016/j.agsy.2018.08.008
Paulis, J. (2007). Measurable soil organic carbon fractions for modelling soil carbon sequestration (Doctoral dissertation). University of Guelph, Guelph, Canada.
Prosdocimi, M., Tarolli, P., & Cerdà, A. (2016). Mulching practices for reducing soil water erosion: A review. Earth-Science Reviews 161(), 191-203. doi: https://doi.org/10.1016/j.earscirev.2016.08.006
Radics, Z., Dekemati, I., Gyuricza, C., Simon, B., Ibrahim, H., Vinogradov, S., & Birkás, M. (2022). Effects of Irrigation and Organic Mulching on the Abundance and Biomass of Earthworms. Polish Journal of Environmental Studies 31(3), 2811-2821. doi: https://doi.org/10.15244/pjoes/143258
Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils. Soil Science 78(2),. doi: https://doi.org/10.1097/00010694-195408000-00012
Rizvi, R. H., Dhyani, S. K., Yadav, R. S., & Singh, R. (2011). Biomass production and carbon stock of poplar agroforestry systems in Yamunanagar and Saharanpur districts of northwestern India. Current Science 100(5), 736-742.
Römbke, J., Schmidt, P., & Höfer, H. (2009). The earthworm fauna of regenerating forests and anthropogenic habitats in the coastal region of Paraná. Pesquisa Agropecuaria Brasileira 44(8), 1040-1049. doi: https://doi.org/10.1590/S0100-204X2009000800037
Shiferaw, B., Prasanna, B. M., Hellin, J., & Bänziger, M. (2011). Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Security 3(3), 307-327. doi: https://doi.org/10.1007/s12571-011-0140-5
Simon, B., Boziné Pullai, K., Selmeczi, D., Sebők, A., Tóthné Bogdányi, F., Weldmichael, T. G., . . . Tóth, F. (2022). Green Corridors May Sustain Habitats for Earthworms in A Partially Converted Grassland. Agronomy 12(4), 793. doi: https://doi.org/10.3390/agronomy12040793
Stefanovits, P., Filep, G., & Füleky, G. (2010). Talajtan. Budapest: Mezőgazda Kiadó.
Sun, G., Zhu, Y., Ye, M., Yang, J., Qu, Z., Mao, W., & Wu, J. (2019). Development and application of long-term root zone salt balance model for predicting soil salinity in arid shallow water table area. Agricultural Water Management 213(), 486-498. doi: https://doi.org/10.1016/j.agwat.2018.10.043
Swieter, A., Langhof, M., Lamerre, J., & Greef, J. M. (2019). Long-term yields of oilseed rape and winter wheat in a short rotation alley cropping agroforestry system. Agroforestry Systems 93(5), 1853-1864. doi: https://doi.org/10.1007/s10457-018-0288-5
Tian, G., Kang, B., & Brussaard, L. (1997). Effect of mulch quality on earthworm activity and nutrient supply in the humid tropics. Soil Biology and Biochemistry 29(3), 369-373. doi: https://doi.org/10.1016/S0038-0717(96)00099-5
Tian, G., Olimah, J., Adeoye, G., & Kang, B. (2000). Regeneration of Earthworm Populations in a Degraded Soil by Natural and Planted Fallows under Humid Tropical Conditions. Soil Science Society of America Journal 64(1), 222-228. doi: https://doi.org/10.2136/sssaj2000.641222x
Tóth, B. (2006). Nemesnyár-fajták ismertetője–Irányelvek a nemesnyár-fajták kiválasztásához. Budapest: Agroinform Kiadó.
Tóth, F., Kerepeczki, É., Berzi, N., & Gál, D. (2016). Létesített vizes élőhelyek hasznosítása az intenzív haltermelés elfolyóvizének kezelésében. Kutatói utánpótlást elősegítő program I. szakmai konferenciája. Gödöllő: NAIK.
Tóth, F., Zsuga, K., Kerepeczki, É., Berzi-Nagy, L., Körmöczi, L., & Lövei, G. L. (2020). Seasonal Differences in Taxonomic Diversity of Rotifer Communities in a Hungarian Lowland Oxbow Lake Exposed to Aquaculture Effluent. Water 12(5), 1300. doi: https://doi.org/10.3390/w12051300
Unkovich, M., Blott, K., Knight, A., Mock, I., Rab, A., & Portelli, M. (2003). Water use, competition, and crop production in low rainfall, alley farming systems of south-eastern Australia. Australian Journal of Agricultural Research 54(8), 751. doi: https://doi.org/10.1071/ar03049
Vaupel, A., Bednar, Z., Herwig, N., Hommel, B., Moran-Rodas, V. E., & Beule, L. (2023). Tree-distance and tree-species effects on soil biota in a temperate agroforestry system. Plant and Soil 487(1), 355-372. doi: https://doi.org/10.1007/s11104-023-05932-9
Vincent-Caboud, L., Casagrande, M., David, C., Ryan, M. R., Silva, E. M., & Peigne, J. (2019). Using mulch from cover crops to facilitate organic no-till soybean and maize production. A review. Agronomy for Sustainable Development 39(5), 45. doi: https://doi.org/10.1007/s13593-019-0590-2
Youkhana, A., & Idol, T. (2009). Tree pruning mulch increases soil C and N in a shaded coffee agroecosystem in Hawaii. Soil Biology and Biochemistry 41(12), 2527-2534. doi: https://doi.org/10.1016/j.soilbio.2009.09.011
Yu, Y.-Y., Turner, N. C., Gong, Y.-H., Li, F.-M., Fang, C., Ge, L.-J., & Ye, J.-S. (2018). Benefits and limitations to straw- and plastic-film mulch on maize yield and water use efficiency: A meta-analysis across hydrothermal gradients. European Journal of Agronomy 99(), 138-147. doi: https://doi.org/10.1016/j.eja.2018.07.005
Zhang, Z., Zhang, Z., Feng, G., Lu, P., Huang, M., & Zhao, X. (2022). Biochar Amendment Combined with Straw Mulching Increases Winter Wheat Yield by Optimizing Soil Water-Salt Condition under Saline Irrigation. Agriculture 12(10), 1681. doi: https://doi.org/10.3390/agriculture12101681
Zizinga, A., Mwanjalolo, J.-G. M., Tietjen, B., Bedadi, B., Pathak, H., Gabiri, G., & Beesigamukama, D. (2022). Climate change and maize productivity in Uganda: Simulating the impacts and alleviation with climate smart agriculture practices. Agricultural Systems 199(), 103407. doi: https://doi.org/10.1016/j.agsy.2022.103407
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Beatrix Feketéné Bakti, Barbara Simon, Mihály Zalai, Hanaa Tharwat Mohamed Ibrahim, Maimela Maxwell Modiba, Zibuyile Dlamini , Ágnes Kun
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.