Evapotranspiration of aerobic rice in large weighing lysimeter

Authors

  • Mihály Jancsó Hungarian University of Agriculture and Life Sciences, Institute of Environmental Sciences, Research Center for Irrigation and Water Management, Szarvas, Hungary https://orcid.org/0000-0003-1934-9686
  • Árpád Székely Hungarian University of Agriculture and Life Sciences, Institute of Environmental Sciences, Research Center for Irrigation and Water Management, Szarvas, Hungary https://orcid.org/0000-0002-5336-7485
  • Tímea Szalóki Hungarian University of Agriculture and Life Sciences, Institute of Environmental Sciences, Research Center for Irrigation and Water Management, Szarvas, Hungary https://orcid.org/0000-0003-4145-6605
  • Csaba Lantos Cereal Research Non-Profit Ltd. https://orcid.org/0000-0002-2168-5681
  • Noémi Júlia Valkovszki Hungarian University of Agriculture and Life Sciences, Institute of Environmental Sciences, Research Center for Irrigation and Water Management, Szarvas, Hungary https://orcid.org/0000-0003-4504-8991
  • Csaba Bozán Hungarian University of Agriculture and Life Sciences, Institute of Environmental Sciences, Research Center for Irrigation and Water Management, Szarvas, Hungary
  • János Pauk Cereal Research Non-Profit Ltd.

DOI:

https://doi.org/10.18380/SZIE.COLUM.2022.9.2.5

Keywords:

evapotranspiration, crop coefficient, aerobic rice, water-use efficiency

Abstract

Aerobic rice production is an alternative growing method to reduce water consumption of rice and thus increase the water productivity of the system without a significant reduction of yield and quality. Evapotranspiration (ETc) of a Hungarian rice variety, ‘SZV Tünde’ under aerobic conditions was measured in large weighing lysimeter during the growing season in 2020. In our experiment, 506.7 g/m2 grain yield and a total above-ground biomass of 1140.4 g/m2 were produced with the application of 315.6 mm of irrigation. Water use-efficiency (WUE) based on the water input and the grain yield was 0.65 g/L. Total ETc for the whole season was measured as 648.3 mm. However, ETc values were ranged 2.04-3.86 mm/day, 3.57-7.90 mm/day and 0.90-4.26 mm/day at the initial, mid and end stages, respectively. Crop coefficients for the different periods of the season were calculated as Kcini=0.82, Kcmid=1.40 and Kcend=0.77. Negative effects of drought can seriously damage rice crop; therefore irrigation scheduling has significant role in successful aerobic rice cultivation. Reliable estimation of evapotranspiration rate in different crop developmental stages can promote this goal.

Author Biography

  • Mihály Jancsó, Hungarian University of Agriculture and Life Sciences, Institute of Environmental Sciences, Research Center for Irrigation and Water Management, Szarvas, Hungary

    corresponding author
    Jancso.Mihaly@uni-mate.hu

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration - Guide- lines for computing crop water requirements (Tech. Rep.). Rome: FAO - Food and Agriculture Organization of the United Nations.

Borrell, A., Garside, A., & Fukai, S. (1997). Improving efficiency of water use for irrigated rice in a semi-arid tropical environment. Field Crops Research 52(3), 231-248. doi: https://doi.org/10.1016/S0378-4290(97)00033-6

Bouman, B., Hengsdijk, H., Hardy, B., Bindraban, P., Tuong, T., Ladha, J., ... Ladha, J. (2002). Water-wise Rice Production. International Rice Research Institute. doi: https://doi.org/10.22004/AG.ECON.281822

Bouman, B., Yang, X., Wang, H., Wang, Z., Zhao, J., & Chen, B. (2006). Performance of aerobic rice varieties under irrigated conditions in North China. Field Crops Research 97(1), 53-65. doi: https://doi.org/10.1016/j.fcr.2005.08.015

Courtois, B., Frouin, J., Greco, R., Bruschi, G., Droc, G., Hamelin, C., . . . Ahmadi, N. (2012). Genetic Diversity and Population Structure in a European Collection of Rice. Crop Science 52(4), 1663-1675. doi: https://doi.org/10.2135/cropsci2011.11.0588

de Avila, L. A., Martini, L. F. D., Mezzomo, R. F., Refatti, J. P., Campos, R., Cezimbra, D. M., . . . Marchesan, E. (2015). Rice Water Use Efficiency and Yield under Continuous and Intermittent Irrigation. Agronomy Journal 107(2), 442-448. doi: https://doi.org/10.2134/agronj14.0080

Enriquez, Y., Yadav, S., Evangelista, G. K., Villanueva, D., Burac, M. A., & Pede, V. (2021). Disentangling Challenges to Scaling Alternate Wetting and Drying Technology for Rice Cultivation: Distilling Lessons From 20 Years of Experience in the Philippines. Frontiers in Sustainable Food Systems 5(1), 675818. doi: https://doi.org/10.3389/fsufs.2021.675818

Hassen, M. B., Monaco, F., Facchi, A., Romani, M., Valè, G., & Sali, G. (2017). Economic Performance of Traditional and Modern Rice Varieties under Different Water Management Systems. Sustainability 9(3), 347. doi: https://doi.org/10.3390/su9030347

Ibadzade, M., Kun, Á., Székely, Á., Szalóki, T., Penksza, K., & Jancsó, M. (2020). The role of effluent water irrigation in the mineral absorption of aerobic rice varieties (Oryza sativa L.). Cereal Research Communications 49(3), 493–501. doi: https://doi.org/10.1007/s42976-020-00117-x

Irmak, S., Djaman, K., & Sharma, V. (2015). Winter Wheat (Triticum aestivum L.) Evapo- transpiration and Single (Normal) and Basal Crop Coefficients. Transactions of the ASABE 58(4), 1047–1066. doi: https://doi.org/10.13031/trans.58.11083

Jancsó, M., Balla, I., Valkovszki, N., Bozán, C., & Pauk, J. (2021). Impact of crop residues on soil water evaporation in weighing lysimeters. In 19. gumpensteiner lysimetertagung: Lysimeter und bodenwasserhaushalt: Trockenheit - bewässerung - ertragssicherheit (p. 139-142).

Jancsó, M., Kun, Á., Székely, Á., Szalóki, T., Ibadzade, M., & Bozán, C. (2019). New developments at the Lysimeter Station in Szarvas. In 18. gumpensteiner lysimetertagung (p. 155- 156).

Jancsó, M., Székely, Á., Szalóki, T., Lantos, C., & Pauk, J. (2017). Performance of rice vari- eties under aerobic conditions in Hungary. Columella – Journal of Agricultural and Environmental Sciences 4(1), 83-88. doi: https://doi.org/10.18380/SZIE.COLUM.2017.4.1.suppl

Kassai, P., & Sisák, I. (2018). The role of geology in the spatial prediction of soil properties in the watershed of Lake Balaton, Hungary. Geologia Croatica 71(1), 29-39. doi: https://doi.org/10.4154/gc.2018.04

Lantos, C., Jancsó, M., & Pauk, J. (2005). Microspore culture of small grain cereals. Acta Physiologiae Plantarum 27(4), 631-639. doi: https://doi.org/10.1007/s11738-005-0067-6

Luo, L. J. (2010). Breeding for water-saving and drought-resistance rice (WDR) in China. Journal of Experimental Botany 61(13), 3509-3517. doi: https://doi.org/10.1093/jxb/erq185

Nie, L., Peng, S., Chen, M., Shah, F., Huang, J., Cui, K., & Xiang, J. (2011). Aerobic rice for water-saving agriculture. A review. Agronomy for Sustainable Development 32(2), 411-418. doi: https://doi.org/10.1007/s13593-011-0055-8

Pauk, J., Jancsó, M., & Simon-Kiss, I. (2009). Rice Doubled Haploids and Breeding. In A. Touraev, B. P. Forster, & S. M. Jain (Eds.), Advances in haploid production in higher plants (p. 189-197). Dordrecht: Springer Netherlands. doi: https://doi.org/10.1007/978-1-4020-8854-4_16

Pimentel, D., Berger, B., Filiberto, D., Newton, M., Wolfe, B., Karabinakis, E., ... Nandagopal, S. (2004). Water Resources: Agricultural and Environmental Issues. BioScience 54(10), 909. doi: https://doi.org/10.1641/0006-3568(2004)054[0909:WRAAEI]2.0.CO;2

Prasad, R. (2011). Aerobic Rice Systems. In D. L. Sparks (Ed.), Advances in agronomy (Vol. 111, p. 207-247). Academic Press. doi: https://doi.org/10.1016/B978-0-12-387689-8.00003-5

Raboin, L.-M., Ballini, E., Tharreau, D., Ramanantsoanirina, A., Frouin, J., Courtois, B., & Ahmadi, N. (2016). Association mapping of resistance to rice blast in upland field conditions. Rice 9(1), doi: https://doi.org/10.1186/s12284-016-0131-4

Raes, D. (2012). The ETo Calculator – Evapotranspiration from a reference surface, Version 3.2 (Tech. Rep.). Rome, Italy: FAO - Food and Agriculture Organization of the United Nations.

Rana, G., & Katerji, N. (2000). Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: a review. European Journal of Agronomy 13(2), 125-153. doi: https://doi.org/10.1016/S1161-0301(00)00070-8

Simonné Kiss, I. (2001). Six decades of rice cultivation and varietal improvement in Hungary. Hungarian Agricultural Research 10(1), 4-7.

Sulmon, C., van Baaren, J., Cabello-Hurtado, F., Gouesbet, G., Hennion, F., Mony, C., ... Gérard, C. (2015). Abiotic stressors and stress responses: What commonalities appear between species across biological organization levels? Environmental Pollution 202(1), 66-77. doi: https://doi.org/10.1016/j.envpol.2015.03.013

Székely, Á., Szalóki, T., Ibadzade, M., Pauk, J., Lantos, C., Jancsó, M., et al. (2021). Germi- nation dynamics of european rice varieties under salinity stress. Pak. J. Agric. Sci 58(1), 1–5.

Székely, Á., Szalóki, T., Lantos, C., Pauk, J., Venkatanagappa, S., & Jancsó, M. (2022). Data of selected set of rice accessions at the germination stage under cold stress. Data in Brief 41(1), 107929. doi: https://doi.org/10.1016/j.dib.2022.107929

Tabbal, D., Bouman, B., Bhuiyan, S., Sibayan, E., & Sattar, M. (2002). On-farm strategies for reducing water input in irrigated rice; case studies in the Philippines. Agricultural Water Management 56(2), 93-112. doi: https://doi.org/10.1016/S0378-3774(02)00007-0

Downloads

Published

2022-12-30

How to Cite

Evapotranspiration of aerobic rice in large weighing lysimeter. (2022). COLUMELLA – Journal of Agricultural and Environmental Sciences, 9(2), 5-12. https://doi.org/10.18380/SZIE.COLUM.2022.9.2.5

Similar Articles

31-40 of 81

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)