Digital microclimate measurement on the dairy farm

Authors

  • László Alföldi Holstein Genetika Kft, H-2100 Gödöllő, Pattantyús Ábrahám krt. 11.
  • Zoltán Tarr Quinto Solutions Kft., H-1054 Budapest, Báthory utca 20. II. emelet 2.
  • János Tőzsér Szent István Egyetem, H-2103 Gödöllő, Egyetem tér 1.

DOI:

https://doi.org/10.17205/SZIE.AWETH.2020.2.094

Keywords:

digital measurement, microclimate, dairy cattle

Abstract

In this article we present a sensor-based data acquisition technology (IoT) and the benefits of its use in precision, especially in dairy, farming, to measure and monitor the climate of the barn. The article describes the transmission technologies used in data collection, detailing the long range and low power LoRa network, which is well suited for use in agriculture. Site-specific data collection can be part of optimizing the milk yield. Based on practical experiences, we present the capabilities of the technology developed, including simple upgradeability and more accurate forecasting over time as data accumulates. The continuous development of technology based on data collection and analysis, which is gradually spreading in Hungary, can greatly contribute to the improvement of the quality and efficiency of farming.

Author Biography

  • László Alföldi, Holstein Genetika Kft, H-2100 Gödöllő, Pattantyús Ábrahám krt. 11.

    corresponding author
    alföldi@holstein-genetika.hu

References

Cheong, P. S., Bergs, J., Hawinkel, C., Famaey, J. (2017): Comparison of LoRaWAN Classes and their Power Consumption. https://doi.org/10.1109/SCVT.2017.8240313

de Carvalho Silva, J., Rodrigues, J., Alberti, A., Šolić, P., Aquino, A. (2017): LoRaWAN - A Low Power WAN Protocol for Internet of Things: a Review and Opportunities. Proc. Internat. Multidisciplinary Conf. Computer and Energy Science (SpliTech 2017), Split, Croatia.

Depuyd, J. (2016): LoRaWAN simply explained, in Jensd's I/O buffer, http://jensd.be/755/network/lorawan-simply-explained (letöltve: 2019. 06.30.)

Exadaktylos, V., Silva, M., Aerts, J. M., Taylor, C. J., Berckmans, D. (2008): Real-time recognition of sick pig cough sounds. Computers and Electronics in Agriculture, 63. 207–214. https://doi.org/10.1016/j.compag.2008.02.010

Ferrari, S., Piccinini, R., Silva, M., Exadaktylos, V., Berckmans, D., Guarino, M. (2010): Cough sound description in relation to respiratory diseases in dairy calves. Preventive Veterinary Medicine, 96. 276–280. https://doi.org/10.1016/j.prevetmed.2010.06.013

Kearney, A. T. (2017): Technology and Innovation for the Future of Production: Accelerating Value Creation. http://www3.weforum.org/docs/WEF_White_Paper_Technology_ Innovation_Future_of_Production_2017.pdf

Mekkia, K., Bajica, E., Chaxela, F., Meyerb, F. (2019): A comparative study of LPWAN technologies for large-scale IoT deployment, ICT Express 5. 1–7. https://doi.org/10.1016/j.icte.2017.12.005

Naumann, H. (2018): NB-IoT versus SIGFOX, LoRaWAN, and Weightless - power / energy the inconvenient truth. http://www.gsm-modem.de/M2M/iot-university/nb-iot-power-consumption/ (letöltve: 2019.07.12.)

Rainard, P., Riollet, C. (2006): Innate immunity of the bovine mammary gland. Veterinary Research, 37. 3. 369–400. https://doi.org/10.1051/vetres:2006007

Rutter, M. (2011): What sensors work for livestock now and where might we go? Harper Adams University, The National Centre for Precision Farming.

Solymosi, N., Torma, C., Kern, A., Maróti-Agóts, Á., Barcza, Z., Könyves, L., Reiczigel, J., (2010): Az évenkénti hőstresszes napok számának változása Magyarországon a klímaváltozás függvényében. In 36. Meteorológiai Tudományos napok: Változó éghajlat és következményei a Kárpát-medencében, Budapest

Sordillo, L. M., Shafer-Weaver, K., DeRosa, D. (1997): Immunobiology of the mammary gland. Journal of Dairy Science, 80. 1851–1865. https://doi.org/10.3168/jds.S0022-0302(97)76121-6

Thornton, P. K. (2010): Livestock production: Recent trends, future prospects. Philosophical Transactions of the Royal Society, B: Biological Sciences, 365. 1554. 2853–2867. https://doi.org/10.1098/rstb.2010.0134

http_1 https://smartmakers.io/en/lorawan-range-part-1-the-most-important-factors-for-a-good-lorawan-signal-range/

http_2 https://www.soselectronic.hu/articles/sos-supplier-of-solution/internet-of-things-2-resz-vezetek-nelkuli-adatatviteli-technologiak-2043

http_3 https://www.semtech.com/lora/what-is-lora ; https://lora-alliance.org/about-lorawan

http_4 https://www.sigfox.com/en/sigfox-iot-technology-overview

http_5 https://prohardver.hu/teszt/narrowband_iot/a_narrowband-iot.html

http_6 https://smartmakers.io/en/lorawan-range-part-2-range-and-coverage-of-lorawan-in-practice/

http_7 https://blog.st.com/lora-iot-network-nucleo-lrwan1/

http_8 http://wizzilab.com/product/sh2050-nucleo32-usb

http://www.nrn-lcee.ac.uk/documents/8.MarkRutterLivestockSensors.pdf (letöltve 2019.06.27.)

Published

2020-12-28

Issue

Section

Cikk szövege

How to Cite

Digital microclimate measurement on the dairy farm. (2020). Animal Welfare, Ethology and Housing Systems (AWETH), 16(2), 94-109. https://doi.org/10.17205/SZIE.AWETH.2020.2.094

Similar Articles

1-10 of 32

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 > >>