In vitro conservation of gametes: the way forward to conserve the genetic resources of autochthonous sheep breeds
DOI:
https://doi.org/10.17205/SZIE.AWETH.2023.1.118Keywords:
sheep, cryopreservation, oocytes, control slow rate freezing, vitrification, assisted reproductive technologiesAbstract
Assisted reproductive technologies (ARTs) significantly improved livestock productivity and reproductive performance and enabled elite parents to produce thousands of offspring globally. However, indiscriminate use ARTs, lack of information and materials on autochthonous sheep breeds (ASB) resulted in a loss of their genetic resources (GnR), thus shooting up the number of at-risk and extinct ASB globally. This problem is more in Europe and the Caucasus region, Africa, and Asia, according to the FAO 2005, 2017, and Sustainable Development Goals, 2022 reports. Considering the current economic challenges, in vivo gene conservation (INGC) is expensive and less sustainable. Therefore, an in vitro gene conservation (IVGC) can supplement the INGC for better efficiency and sustainability. The current review explored the pros and cons of ARTs on ASB’s GnR, the need to conserve their GnR through IVGC, and the prospects of the IVGC on ASB’s GnR conservation. Interestingly, Vitrification with reduced volume (e.g., cryotop) is the leading technique in oocyte cryopreservation, as it results in lower cryoprotectants toxicity, better oocyte viability, and pregnancy rates aside from being cheap and field-friendly than the other vitrification techniques. With oocyte and spermatozoa cryopreservation from the same breed, an extinct breed of interest can be regenerated in a single generation. However, oocyte cryopreservation holds a considerable prospect in IVGC, but the technique in sheep still needs improvements.
References
Abril-Sánchez, S., Crosignani, N., Freitas-de-Melo, A., Terrazas, A., Damián, J. P., Beracochea, F., Silveira, P., Ungerfeld, R. (2018): Sedation or anaesthesia decrease the stress response to electroejaculation and improve the quality of the collected semen in goat bucks. Anim. Int. J. 12. 2598–2608. https://doi.org/10.1017/S1751731118000320
Alvarez, M., Tamayo-Canul, J., Anel, E., Boixo, J., Mata-Campuzano, M., Martinez-Pastor, F., Anel, L., de Paz, P. (2012): Sperm concentration at freezing affects post-thaw quality and fertility of ram semen. Theriogenology, 77. 1111–1118. https://doi.org/10.1016/j.theriogenology.2011.10.013
Ambrosi, C. P., Rubio, N, Giménez, G., Venturino, A., Aisen, E. G., López Armengol, M. F. (2018): Modeling of behavioral responses for successful selection of easy-to-train rams for semen collection with an artificial vagina. Anim Reprod Sci., 193. 90–97. https://doi.org/10.1016/j.anireprosci.2018.04.003
Amiridis, G.S, Cseh, S. (2012): Assisted reproductive technologies in the reproductive management of small ruminants. Anim Reprod Sci. 130. 3-4. 152–161. https://doi.org/10.1016/j.anireprosci.2012.01.009
Banker, M., Kotdawala, A., Gupta, R. (2017): The Impact of Vitrification in Artificial Reproductive Technology Programmes. European Medical Journal, 2. 4. 82–89. https://doi.org/10.33590/emj/10312686
Bertol, M. A. F. (2016). ‘Cryopreservation of Epididymal Sperm’, in Cryopreservation in Eukaryotes, F. Marco-Jimenez, H. Akdemir, Eds. InTech. (Eds F Marco-Jiménez, H Akdemir), 121–135. https://doi.org/10.5772/65010
Dadashpour Davachi, N, Zare Shahneh, A, Kohram, H, Zhandi, M, Dashti, S, Shamsi, H, Moghadam, R. (2014): In vitro ovine embryo production: the study of seasonal and oocyte recovery method effects. Iran Red Crescent Med J., 16. 9. e20749. https://doi.org/10.5812/ircmj.20749
Daly, J, Smith, H, McGrice, HA, Kind, KL, van Wettere, WHEJ. (2020): Towards Improving the Outcomes of Assisted Reproductive Technologies of Cattle and Sheep, with Particular Focus on Recipient Management. Animals, 10. 2. 293. https://doi.org/10.3390/ani10020293
David, I, Kohnke, P, Fehrenbach, J, Lopes Simoes, AR, Debreuve E, Descombes, (2018): New objective measurements of semen wave motion are associated with fertility in sheep. Reprod. Fertil. Dev., 30. 889–896. https://doi.org/10.1071/RD17472
Egerszegi, I, Somfai, T, Nakai, M, Tanihara, F, Noguchi, J, Kaneko, H, Nagai, T, Rátky, J, Kikuchi, K. (2013): Comparison of cytoskeletal integrity, fertilization and developmental competence of oocytes vitrified before or after in vitro maturation in a porcine model. Cryobiology, 67. 3. 287–292. https://doi.org/10.1016/j.cryobiol.2013.08.009
Ehling, C., Rath, D., Struckmann, C., Frenzel, A., Schindler, L., Niemann, H. (2006): Utilization of frozen-thawed epididymal ram semen to preserve genetic diversity in Scrapie susceptible sheep breeds’, Theriogenology, 66. 2160–2164. https://doi.org/10.1016/j.theriogenology.2006.07.003
Evans, G., Maxwell, W. (1987): Salamon's artificial insemination of sheep and goats. Butterworth, Sydney. pp. 194.
FAO (2007): The State of the World’s Animal Genetic Resources forFood and Agriculture, edited by Barbara Rischkowsky and Dafydd Pilling. Rome
FAO (2012): Section 8 collection of germplasm and tissues. In:cryoconservation of animal genetic resources, animalproduction and health guideline. Retrieve from: http://www.fao.org/3/i3017e/i3017e00.pdf. on Oct 24b 2022
FAO (2015): The Second Report on the State of the World’s Animal Genetic Resources for Food and Agriculture, edited by Scherf,B. D. and Pilling, D. FAO Commission on Genetic Resources forFood and Agriculture Assessments. Rome (available athttp://www.fao.org/3/a-i4787e/index.html.
Fernández Abella, D., Da Costa, M., Guérin, Y. Dacheux, J. L. (2015): Fertility of undiluted ram epididymal spermatozoa stored for several days at 4 C’, Animal, 9. 313–319. https://doi.org/10.1017/S1751731114002109
http1. DAD-IS (2022): Retrieved on November 09, 2022, from: https://www.fao.org/dad-is/browse-by-country-and-species/en/
http2., ‘Lane ram ejaculator’, (2022): Available online: http://www.lane-mfg.com/Lane-Ram-Ejaculator-Instructions.pdf
Kaabi, M., Paz, P., Alvarez, M., Anel, E., Boixo, J., Rouissi, H., Herraez, P., Anel, L. (2003): Effect of epididymis handling conditions on the quality of ram spermatozoa recovered post-mortem’, Theriogenology, 60. 1249–1259. https://doi.org/10.1016/S0093-691X(03)00139-0
Kasai, M., Mukaida, T. (2004): Cryopreservation of Animal and Human Embryos by Vitrification. Reproductive BioMedicine Online, 9. 2. 164–170. https://doi.org/10.1016/S1472-6483(10)62125-6
Kuwayama, M. (2006): New egg freezing technique offers hope to hundreds of women. European society of human reproduction and embryology news release 19-jun-2006 retrieved on October 23rd, 2022, from: https://www.eurekalert.org/news-releases/907116
Leboeuf, B., Restall, B., Salamon, S. (2000): Production and storage of goat semen for artificial insemination, Anim. Reprod. Sci., 62, 113–141. https://doi.org/10.1016/S0378-4320(00)00156-1
Lussig, B., Maggiulli, R., Fabozzi, G., Bertelle, S., Vaiarelli, A., Cimadomo, D., Ubaldi, F. M., Rienzi, L. A. (2019): brief history of oocyte cryopreservation: Arguments and facts. Acta Obstet Gynecol Scand., 98. 5. 550–558. https://doi.org/10.1111/aogs.13569
Otoi, T., Yamamoto, K., Koyama, N., Tachikawa, S., Suzuki, T.A. (1996): Frozen-thawed in vitro-matured bovine oocyte derived calf with normal growth and fertility. J Vet Med Sci., 58. 8. 811–813. https://doi.org/10.1292/jvms.58.811
Quan, G, Wu, G, Hong, Q. (2017): Oocyte Cryopreservation Based in Sheep: The Current Status and Future Perspective. Biopreserv Biobank. 15. 6. 535–547. https://doi.org/10.1089/bio.2017.0074
Rickard, J. P., Pini, T., Soleilhavoup, C., Cognie, J., Bathgate, R., Lynch, G. W., De Graaf, S. P. (2014): Seminal plasma aids the survival and cervical transit of epididymal ram spermatozoa. Reproduction, 148. 469–478. https://doi.org/10.1530/REP-14-0285
Rodríguez, C., Anel, L., Alvarez, M., Anel, E., Boixo, J. C., Chamorro, C. A., de Paz, P. (2006): Ovum pick-up in sheep: a comparison between different aspiration devices for optimal oocyte retrieval. Reprod Domest Anim., 41. 2. 106–113. https://doi.org/10.1111/j.1439-0531.2006.00648.x
Saragusty, J., Arav, A. (2011): Current progress in oocyte and embryo cryopreservation by slow freezing and vitrification. Reproduction, 141. 1. 1–19. https://doi.org/10.1530/REP-10-0236
SDG 2022, ‘SDG 2.5.1, Number/proportion of animal genetic resources for food and agriculture secured in either medium- or long-term conservation facilities. Available online: https://public.tableau.com/shared/P5TN4JFYC?:showVizHome=no
Sharkey, S, Callan, RJ, Mortimer, R, Kimberling, C. (2001): Reproductive techniques in sheep. Vet Clin North Am Food Anim Pract., 17. 2. 435–455, https://doi.org/10.1016/s0749-0720(15)30037-2
Shipley, C. F. B., Brian, C., Buckrell, M .J. A., Mylne, J. P., Hunton, J. R. (2007): Artificial Insemination and Embryo Transfer in Sheep’, in Current therapy in large animal theriogenology, WB Saunders, 629–641. https://doi.org/10.1016/B978-072169323-1.50089-1
Somfai, T., Yoshioka, K., Tanihara, F., Kaneko, H., Noguchi, J., Kashiwazaki, N., Nagai, T., Kikuchi, K. (2014): Generation of Live Piglets from Cryopreserved Oocytes for the First Time Using a Defined System for In Vitro Embryo Production. PLOS ONE, 9. 5. e97731. https://doi.org/10.1371/journal.pone.0097731
Sudiman, J, Lee, A, Ong, KL, Yuan, WZ, Jansen, S, Temple-Smith, P, Pangestu, M, Catt, S. (2019): Tolerance of lamb and mouse oocytes to cryoprotectants during vitrification. Zygote, 27. 1. 36–45. https://doi.org/10.1017/S0967199418000606
Vozaf, J, Svoradová, A, Baláži, A, Vašíček, J, Olexiková, L, Dujíčková, L, Makarevich, AV, Jurčík, R, Ďúranová, H, Chrenek, P. (2022). The Cryopreserved Sperm Traits of Various Ram Breeds: Towards Biodiversity Conservation. Animals, 12. 1311. https://doi.org/10.3390/ani12101311
Wani, A. R., Khan, M. Z., Sofi, K. A., Malik, A. A., Lone, F. A., Bhat, F. A. (2013): Effect of Folliclar Size on In vitro Maturation, Fertilization and Culture of Sheep Embryos. Iranian Journal of Veterinary Research, Shiraz University, 14.
Wieczorek, J, Koseniuk, J, Cegla, M. (2018): The repeatable method of laparoscopic ovum pick-up (OPU) in sheep: clinical aspects and efficiency of the method. Pol J Vet Sci., 21. 4. 803–810. https://doi.org/10.24425/pjvs.2018.125603
Wu, C, Rui, R, Dai, J, Zhang, C, Ju, S, Xie, B, Lu, X, Zheng, X. (2006): Effects of cryopreservation on the developmental competence, ultrastructure and cytoskeletal structure of porcine oocytes. Mol Reprod Dev., 73. 11. 1454–1462. https://doi.org/10.1002/mrd.20579
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Malam Abulbashar Mujitaba, Kútvölgyi Gabriella, Egerszegi István, Vass Nóra, Bodó Szilárd
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.