Feed preference and feeding behavior of different mouse species in laboratory housing
DOI:
https://doi.org/10.31914/aak.3376Keywords:
wild mouse species, Mus musculus, Mus spicilegus, feed preference, natural feed mixtureAbstract
The feed preference of two species of wild mice, the house mouse (Mus musculus), and the mound-building mouse (Mus spicilegus) was investigated (kept in our laboratory for 25 generations). Our interest focused on the feed preference (i.e. if the mice choose the type of feed closest to their natural food). The proximate composition of the two granulated feeds offered to mice differed minimally; the crude fat and crude fibre content of the natural feed mixture was higher, and only this feed contained insect protein. Based on the obtained results, both wild mice species approached the natural feed mixture more frequently than the two other granulated feeds. The same tendency was observed for feed consumption where the animals mostly consumed the natural feed mixture. During the 5-day long study, the consumption of the natural feed mixture increased continuously, while the consumption of the granulated laboratory feed decreased significantly. The average feed consumption was also influenced by room temperature. Our studies can help to develop the optimized indoor keeping and breeding of small domesticated mammals.
References
Abdel-Kader, M. R., Asran, A. A., Al-Gendy, A. A., & Kaleal, K. E. (2014). Food preference for albino rats and albino mice under laboratory conditions. Egypt. J. Agricult. Res., 92, 1279-1290. DOI: https://doi.org/10.21608/ejar.2014.156762
Bonhomme, F., Guenet, J., Dod, B., Moriwaki, K., Bulfield, G. (1987). The polyphyletic origin of labora-tory inbred mice and their rate of evolution. Biol. J. Linnean Soc., 30, 51–58. DOI: https://doi.org/10.1111/j.1095-8312.1987.tb00288.x
Calhoun, J.B. (1941). Distribution and food habits mammals in the vicinity of the reel fort lake. Bio-logical. J. Tannessee Aead. Sci., 17, 177-185.
Coates, M. E. (1987). Ed., International Council for Laboratory Animal Science. ICLAS Guidelines on the Selection and Formulation of Diets for Animals in Biomedical Research, London: Interna-tional Council for Laboratory Animal Science.
Gilbertson, T. A., Fontenot, D. T., Liu, L. I. D. O. N. G., Zhang, H. U. A. I., & Monroe, W. T. (1997). Fatty acid modulation of K+ channels in taste receptor cells: gustatory cues for dietary fat. Am. J. Phys-iol-Cell Physiol., 272, 1203-1210. DOI: https://doi.org/10.1152/ajpcell.1997.272.4.c1203
Gilbertson, T. A. (1998). Gustatory mechanisms for the detection of fat. Current opinion in neurobi-ol., 8, 447-452. DOI: https://doi.org/10.1016/s0959-4388(98)80030-5
Hedrich, H. (2004). Ed., The house mouse as a laboratory model: a historical perspective. The Labor-atory Mouse. Elsevier Science.
Ito,Y. (2001). A method for estimating food preference of the commensal rat. Med. Entomol. Zool., 52, 231-239. DOI: https://doi.org/10.7601/mez.52.231
Labov, J.B., Huck, U.W., Vaswani, P. & Lisk, R.D. (1986). Sex ratio manipulation and decreased growth of male offspring of undernournished golden hamsters (Mesocricetus auratus). Beh. Ecol. Socio-biol., 18, 241-249. DOI: https://doi.org/10.1007/bf00300000
Lenzhofer, N., Ohrnberger, S. A., Valencak T. G. (2020). n-3 polyunsaturated fatty acids as modulators of thermogenesis in Ames dwarf mice. Gerosci.,42, 897-907. DOI: https://doi.org/10.1007/s11357-019-00148-1
Lisk, R. D., Pretlow 3rd, R. A., & Friedman, S. M. (1969). Hormonal stimulation necessary for elicita-tion of maternal nest-building in the mouse (Mus musculus). Animal Behav., 17, 730-737. DOI: https://doi.org/10.1016/s0003-3472(69)80020-5
McClure, P. A. (1981). Sex-biased litter reduction in food-restricted wood rats (Neotoma floridana). Science, 211, 1058-1060. DOI: https://doi.org/10.1126/science.211.4486.1058
Pennycuik, P. R., & Cowan, R. (1990). Odor and food preferences of house mice, mus-musculus. Aus. J. Zool., 38, 241-247. DOI: https://doi.org/10.1071/zo9900241
Ramirez, I. (1994). Chemosensory similarities among oils: does viscosity play a role? Chem. Senses, 19, 155–168. DOI: https://doi.org/10.1093/chemse/19.2.155
Rivers, J. P. W., & Crawford, M. A. (1974). Maternal nutrition and the sex ratio at birth. Nature, 252, 297-298. DOI: https://doi.org/10.1038/252297a0
Rowe, F., Bradfield, A., & Redfern, R. (1974). Food preferences of wild house-mice (Mus musculus L.). J. Hyg., 73, 473-478. DOI: https://doi.org/10.1017/s0022172400042819
Schein, M. W. & Orgain, H. (1953). A preliminary analysis of garbage as food for the Norway rat. Am. J. Trop. Med. Hyg., 2, 1117-1130. DOI: https://doi.org/10.4269/ajtmh.1953.2.1117
Takeda, M., Imaizumi, M., Fushiki, T. (2000). Preference for vegetable oils in the two-bottle choice test in mice. Life Sci., 67, 197-204. DOI: https://doi.org/10.1016/s0024-3205(00)00614-7
Tsuruta, M., Kawada, T., Fukuwatari, T., & Fushiki, T. (1999). The orosensory recognition of long-chain fatty acids in rats. Physiol. behav., 66, 285-288. DOI: https://doi.org/10.1016/s0031-9384(98)00299-6
Wade, C., Kulbokas, E., Kirby, A. et al. (2002). The mosaic structure of variation in the laboratory mouse genome. Nature, 420, 574–578. DOI: https://doi.org/10.1038/nature01252
Whitaker, J. O. (1966). Food of Mus musculus, Peromyscus maniculatus bairdi and Peromyscus luecopus in Vigo Country Indiana. J. Mamm., 47, 473-486. DOI: https://doi.org/10.2307/1377688
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Bárdos Boróka, Kövér György, Szabó András, Gerencsér Zsolt, Nagy István
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.