Hysteretic Smoothed Equation-of-Sate Type Vapor-Liquid Phase Transformation Model

Authors

  • Ildikó Jancskárné Anweiler University of Pécs, Pollack Mihály Faculty of Engineering, Department of Information Technology, H-7624 Pécs, Rókus u. 2.
  • Zoltán Sári University of Pécs, Pollack Mihály Faculty of Engineering, Department of Information Technology, H-7624 Pécs, Rókus u. 2.
  • Lajos Szakonyi University of Pécs, Pollack Mihály Faculty of Engineering, Department of Information Technology, H-7624 Pécs, Rókus u. 2.

Keywords:

vapor-liquid phase transformation, equation-of-state type models, hysteresis

Abstract

Vapor-liquid phase transformation is an important phenomenon in many technological applications, since boiling and condensation are associated with high heat transfer efficiency. Establishing accurate, numerically easy to handle models of this complex process has recently been the focus of many scientific and engineering research projects. Mathematical models for vapor-liquid phase transformations can be divided into two classes: diffuse interface models and sharp interface models. With the diffuse interface method, all governing equations can be solved over the entire computational domain without any priori knowledge of the location of the interfaces, therefore using the diffuse interface is a popular tool for simulations of two-phase flows in engineering applications. Generally the diffuse interface model consists of three conservation equations of mass, momentum and energy, and of an evolution equation of the order parameter that represents the transition between the phases, i.e. the so-called four-equation model. In this work, we focused on the governing equation of the phase transition. The goal was to increase the equation-of-state type equilibrium models by enabling occurrence of metastable states. The introduced model is similar to the equation-of-state type models since it is a function of an intensive state variable (temperature), but in this case this function is hysteretic. The proposed hysteresis function can be easier parameterized than the kinetic type phase transition models. The model can be very useful in several engineering applications, in which an expert could estimate the assumable degree of supersaturation/superheating. The hysteresis model of the thermally induced phase transformation has been derived from the statistics of the model fluid consists of bistable, constant-mass clusters of molecules. We have used a PDE based hysteresis operator to describe the phase change. To ensure that unstable conditions could be always avoided, we have proposed a saturation temperature dependent upper limit of the allowable supersaturation.

Author Biography

  • Ildikó Jancskárné Anweiler, University of Pécs, Pollack Mihály Faculty of Engineering, Department of Information Technology, H-7624 Pécs, Rókus u. 2.

    corresponding author
    jai@morpheus.pte.hu

References

Brokate, M., Sprekels, J. (1996) Hysteresis and Phase Transitions. Springer-Verlag : New York. https://doi.org/10.1007/978-1-4612-4048-8

Callen, H. B. (1985) Thermodynamics and Introduction to Thermostatistics. Wiley : New York.

Caupin, F., Herbert, E. (2006) Cavitation in Water: a Review. In: C. R. Physique, 7. 9–10. 1000–1017. https://doi.org/10.1016/j.crhy.2006.10.015

Civan, F., Sliepcevich, C. M. (1987) Limitation in the Apparent Heat Capacity Formulation for Heat Transfer With Phase Change, In: Proceeding of the Oklahoma Academic Scence, 67. 83–88.

Delannoy, Y., Kueny, J. L., (1990) Two Phase Flow Approach in Unsteady Cavitation Modelling, Cavitation and Multiphase Flow Forum. In: ASME-FED 98. 153–158. p.

Hansson, K., Simunek, J., Mizoguchi, M., Lundin, L., van Genuchten, M. Th. (2004) Water Flow and Heat Transport in Frozen Soil: Numerical Solution and Freeze–Thaw Applications. In: Vadose Zone Journal, 3. 693–704.

Huhn, J., Wolf, J. (1975) Zweiphasenströmung - Gasformig/Flüssig, VEB : Leipzig. Iványi, A. (1997) Hysteresis Models in Electromagnetic Computation. Akadémiai Kiadó : Budapest.

Jancskar, I., Ivanyi, A. (2008a) Phenomenological Hysteresis Model for Vapor-Liquid Phase Transitions. In: Pollack Periodica, 3. 1. 5–28. https://doi.org/10.1556/Pollack.3.2008.1.2

Jancskar, I., Sari, Z., Ivanyi, A. (2008b) Application of hysteresis in FEM modeling of vapor-liquid phase transitions. In: Journal of Physics: Conference Series 138. 1–18. https://doi.org/10.1088/1742-6596/138/1/012008

Jancskar, I., Sari, Z., Szakonyi, L., Ivanyi, A. (2008c) Diffuse Interface Modeling of Liquid-Vapor Phase Transition with Hysteresis. In: Physica B, 403. 2–3. 505–508. https://doi.org/10.1016/j.physb.2007.08.085

Kang, H. C., Kim, M. H. (1999) Characteristics of Film Condensation of Supersaturated Steam-Air Mixture on a Flat Plate, International Journal of Multiphase Flow, 25. 8. 1601–1618. https://doi.org/10.1016/S0301-9322(98)00077-9

Kiselev, S. B., Ely, J. F. (2001) Curvature Effect on the Physical Boundary of Metastable States in Liquids. In: Physica A, 299. 3–4. 357–370. https://doi.org/10.1016/S0378-4371(01)00267-9

Kreith, F. (Ed.) (1999) Mechanical Engineering Handbook. CRC Press : Boca Raton.

Landau, L. D., Lifshitz, E. M. (1980) Statistical Physics. Pergamon Press : New York.

Pruß, A., Wagner, W. (2002) The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. In: Journal of Physical Chemistry Ref. Data, 31. 2. 387–536. https://doi.org/10.1063/1.1461829

Sári Z., Jancskárné A. I., Sipeky A. (2008) Fázisváltozással Járó Kétfázisú Áramlás Modellezése COMSOL – MATLAB _ .NET Környezetben. In: Informatika a Felsőoktatásban Konferencia kiadvány,2008, szerk.: Pethő A., Herdon M., Debrecen, 2008. aug. 27–29. 1–6.

Sari, Z., Ivanyi, A. (2006) Statistical Approach of Hysteresis. In: Physica B, 372. 1–2. 45–48. https://doi.org/10.1016/j.physb.2005.10.015

Sari, Z., Jancskar, I., Szakonyi, L., Ivanyi, A. (2007) Phenomenological Transient FEM Modelling of a Two-phase Flow with Dynamic Phase Change. In: Proceedings of the Eleventh International Conference on Civil, Structural and Environmental Engineering Computing, St. Julians, Malta, 18–21 September 2007. paper: 217.

Sun, Y., Beckermann, C. (2004) Diffuse Interface Modeling of Two-phase Flows Based on Averaging: Mass and Momentum Equations. In: Physica D, 198. 3–4. 281–308. https://doi.org/10.1016/j.physd.2004.09.003

Sun, Y., Beckermann, C. (2007) Sharp Interface Tracking using the Phase-field Equation. In: Journal of Computational Physics, 220. 2. 626–653. https://doi.org/10.1016/j.jcp.2006.05.025

Szakonyi, L., Jancskar, I., Sari, Z. (2006) Energetic Model for an Elementary Unit of a Steam Network. In: Pollack Periodica, 1. 3. 91–102. https://doi.org/10.1556/Pollack.1.2006.3.7

Vortmann, C., Schnerr, G. H., Seelecke, S. (2003) Thermodynamic Modeling and Simulation of Cavitating Nozzle Flow. In: International Journal of Heat and Fluid Flow, 24. 5. 774–783. https://doi.org/10.1016/S0142-727X(03)00003-1

Published

2010-12-15

How to Cite

Jancskárné Anweiler, I., Sári, Z., & Szakonyi, L. (2010). Hysteretic Smoothed Equation-of-Sate Type Vapor-Liquid Phase Transformation Model. Acta Agraria Kaposváriensis, 14(3), 49-63. https://journal.uni-mate.hu/index.php/aak/article/view/1961

Most read articles by the same author(s)