Simulation of autoclaving to optimize energy costs of food industry enterprises

Authors

  • Zoltán Fabulya University of Szeged, Faculty of Engineering, H-6725 Szeged, Mars tér 7.

Keywords:

autoclave, heat treatment, modelling, simulation

Abstract

One of the factors determining the quality of the cans and primarily the meat cans is the heat treatment, the process which is the most significant regarding the energy demands of an enterprise. A heat treating cycle can be divided into three phases: heating up, holding, chilling. Steam is used typically to achieve the necessary temperature and water is used for chilling. There are different regulations on temperatures and time of heat holding for each product so the duration of the heat treatment depends on the product. When operating more autoclave simultaneously certain phases of the process can overlap thus the steam and water demand can develop with big fluctuation. The availability of these resources is limited or they are accessible by extra costs. Hence it is practical to coordinate the operation of the different autoclaves in the interest of thrift. We have developed a decision support system in Microsoft Excel environment and the database needed for the model. We have also created a user friendly interface and the Visual Basic for Application software providing the timing and simulation.

Author Biography

  • Zoltán Fabulya, University of Szeged, Faculty of Engineering, H-6725 Szeged, Mars tér 7.

    fabulya@mk.u-szeged.hu

References

Almonacid-Merino, S. F., Simpson, R., Torres, J. A. (1993). Time-variable retort temperature profiles for cylindrical cans: batch process time, energy consumption, and quality retention model. Journal-of-Food-Process-Engineering, 16(4), 271–287. https://doi.org/10.1111/j.1745-4530.1993.tb00321.x

Bánkuti, G., Csukás, B. (2005). Generic bi-Layered Net Model: Generic Methodology for Process Simulation. In: Artificial intelligence applications and innovations: IFIP TC12 WG12.5–Second IFIP Conference on Artificial Intelligence Applications and Innovations (AIAI2005), Beijing, China, Li. D., Wang, B. (eds.) Springer : New York, 691–700. https://doi.org/10.1007/0-387-29295-0_75

Bhowmik, S. R., Vichnevetsky, R., Hayakawa, K. I. (1985). Mathematical model to estimate steam consumption in vertical still retort for thermal processing of canned foods. Lebensmittelwissen-schaft und Technologie, 18(1), 15–23.

Eszes, F., Huszka, T. (1998). Megfontolások a húsipari főzési és pasztőröző hőkezelések modellezéséhez. I. rész: A pasztőröző hőkezelés kezdeti és peremfeltételeinek vizsgálata. A Hús, 1. 11–17.

Eszes, F., Rajkó, R., Szabó, G. (2003). Energia és vízfelhasználás csökkentés lehetőségeinek feltárása a húsiparban. Proceedings of 10 Symposium on Analytical and Environmental Problems, MTA Szegedi Akadémiai Bizottság Kémiai Szakbizottság Környezetvédelmi és Analitikai Munkabizottsága, Szegedi Tudományegyetem : Szeged, 169–174.

Ramaswamy, H. S., Lo, K. V., Tung, M. A. (1982). Simplified Equations for transient Temperatures in Conductive Foods with Convective Heat Transfer at the Sufrace. General of Food Science, 47(6), 2042–2047., 2065. https://doi.org/10.1111/j.1365-2621.1982.tb12941.x

Welt, B. A, Teixeira, A. A., Chau, K. V., Balaban, M. O., Hintenlang, D. E. (1997). Explicit finite difference methods for heat transfer simulation and thermal process design. Journal of Food Science, 62(2), 230–236. https://doi.org/10.1111/j.1365-2621.1997.tb03974.x

Published

2007-07-15

How to Cite

Fabulya, Z. (2007). Simulation of autoclaving to optimize energy costs of food industry enterprises. Acta Agraria Kaposváriensis, 11(2), 125-134. https://journal.uni-mate.hu/index.php/aak/article/view/1873

Most read articles by the same author(s)