Diagnostic task realization by agent-based technics

Authors

  • Erzsébet Németh Systems and Control Laboratory Computer and Automation Research Institute, Hungarian Academy of Sciences H-1111 Budapest, Kende u. 13-17.
  • Rozália Piglerné Lakner Department of Computer Sciences, University of Pannonia, H-8200 Veszprém, Egyetem u. 10.
  • Katalin M. Hangos Systems and Control Laboratory Computer and Automation Research Institute, Hungarian Academy of Sciences H-1111 Budapest, Kende u. 13-17.

Keywords:

multi-agent system, diagnosis

Abstract

A multi-agent diagnostic system implemented in a Protégé-JADE-JESS environment interfaced with a dynamic simulator and database services is described in this paper. The proposed system architecture enables the use of a combination of diagnostic methods from heterogeneous knowledge sources. In order to facilitate the modularity and general applicability of the diagnostic system, ontologies are defined. The diagnostic system is demonstrated on a case study for diagnosis of faults in a granulation circuit based on HAZOP and FMEA analysis.

Author Biography

  • Erzsébet Németh, Systems and Control Laboratory Computer and Automation Research Institute, Hungarian Academy of Sciences H-1111 Budapest, Kende u. 13-17.

    corresponding author
    nemethe@sztaki.hu

References

Blanke, M., Kinnaert, M., Junze, J., Staroswiecki, M., Schroder, J., Lunze, J. (2003). Diagnosis and Fault-Tolerant Control. Springer-Verlag. https://doi.org/10.1007/978-3-662-05344-7

Cameron, I. T., Raman, R. (2005). Process Systems Risk Management. Elsevier.

Cameron, I. T., Wang, F. Y., Immanuel, C.D., Stepanek, F. (2005). Process systems modelling and applications in granulation: A review. Comput. Chem. Engng., 60(14), 3723–3750. https://doi.org/10.1016/j.ces.2005.02.004

Crawley, F., Tyler, B. (2000). HAZOP: Guide to best practice. The Institution of Chemical Engineers, Rugby, U.K.

Federal Aviation Administration (2000). System Safety Handbook, chapter 9: Analysis Techniques.

JADE - Java Agent DEvelopment Framework (2005).

Jennings, N. R., Wooldridge, M. J. (1998). Agent Technology. Springer-Verlag, Berlin. https://doi.org/10.1007/978-3-662-03678-5

JESS, the Rule Engine for the Java platform (2005).

Lakner, R, Németh, E., Hangos, K. M., Cameron, I. T. (2006a). Agent-based diagnosis for granulation processes. Computer-Aided Chemical Engineering, 21B. Elsevier, (Eds.: W. Marquardt and C. Pantelides) 1443–1448. https://doi.org/10.1016/S1570-7946(06)80250-6

Lakner, R, Németh, E., Hangos, K. M., Cameron, I. T. (2006b). Multiagent realization of prediction-based diagnosis and loss prevention. Lecture Notes in Computer Science, 4031: Lecture Notes in Artificial Intelligence, Springer-Verlag, (Eds.: M. Ali and R. Dapoigny) 70–80. https://doi.org/10.1007/11779568_10

Patton, R. J., Frank, P. M., Clark, R. N. (1989). Fault Diagnosis in Dynamic Systems: Theory and Applications. Prentice-Hall, Englewood CliCs, NJ, 47–153.

The Protege Ontology Editor and Knowledge Acquisition System (2004). http://protege.stanford.edu

Ungar, L. H., Venkatasubramanian, V. (1990). Artificial intelligence in process systems engineering: knowledge representation. CACHE, Austin, TX.

Yang, A., Marquardt, W., Stalker, I., Fraga, E., Serra, M., Pinol, D. (2003). Principles and informal specification of OntoCAPE. Technical report, COGents project, WP2.

Published

2006-10-15

How to Cite

Németh, E., Piglerné Lakner, R., & Hangos, K. M. (2006). Diagnostic task realization by agent-based technics. Acta Agraria Kaposváriensis, 10(3), 211-222. https://journal.uni-mate.hu/index.php/aak/article/view/1843

Most read articles by the same author(s)