Estimation possibilities of damages after earthquakes

Authors

  • Előd Kovács Pannon University, Department of Mathematics and Computing, H-8200 Veszprém, Egyetem u. 10.
  • Ágnes Lipovits Pannon University, Department of Mathematics and Computing, H-8200 Veszprém, Egyetem u. 10.

Keywords:

earthquakes, mixed Poisson distribution, hidden Markov model

Abstract

In our essay we tried to present some possible approaches of the annual earthquake numbers’ statistical investigation, happening in Hungary. We aimed to demonstrate on an interesting series of data the usefulness of the MCMC method, more and more applied in the last years. We pointed out that the most often applied distributions do not apt well to our data. We approached the frequencies with the mixed Poisson distribution acceptably, but the results, received by the evaluation of the hidden Markov model, suggest that the annual numbers of frequencies are not independent of each other. We developed computer application for collecting data and simulation scenarios of earthquake numbers for the next 20 years. Future events might be easily simulated with the presented program, applying for insurance calculations for example.

Author Biography

  • Előd Kovács, Pannon University, Department of Mathematics and Computing, H-8200 Veszprém, Egyetem u. 10.

    corresponding author
    kovacse@almos.uni-pannon.hu

References

Arató M. (1997). Általános Biztosításmatematika. ELTE Eötvös Kiadó : Budapest. 19–28.

Dargahi–Noubary, G. R. (2002). The use of modern statistical theories in assessment of earthquake hazard, with application to quiet regions of eastern North America. Soil Dynamics and Earthquake Engineering, 22(5), 361–369. https://doi.org/10.1016/S0267-7261(02)00027-1

Omori, T. (1894). On the aftershocks of eartqakes Journal of the College of Science of the Imperial University of Tokyo, 111–200.

Kagan, Y. Y., Jackson, D. D. (2000). Probabilistic earthquake forecasting, Geophys. J. In., 143(2), 438–453. https://doi.org/10.1046/j.1365-246X.2000.01267.x

Munich Re Group (2004). World of Natural Hazards, CD

Rydén, T. (2004). „Hidden Markov models” in Encyclopedia of Actuarial Science, 2. J. Teugels, B. Sundt, eds.: Wiley, 821–827.

Tóth, L., Mónus, P., Zsíros, T. (1997). Hungarian Earthquake Bulletin, 1996. GeoRisk : Budapest

Tóth, L., Mónus, P., Zsíros, T. (1998). Hungarian Earthquake Bulletin, 1997. GeoRisk : Budapest

Tóth, L., Mónus, P., Zsíros, T. (1999). Hungarian Earthquake Bulletin, 1998. GeoRisk : Budapest

Tóth, L., Mónus, P., Zsíros, T. (2000). Hungarian Earthquake Bulletin, 1999. GeoRisk : Budapest

Tóth, L., Mónus, P., Zsíros, T., Kiszely, M., Kosztyu, Z. (2001). Hungarian Earthquake Bulletin, 2000. GeoRisk : Budapest

Tóth, L., Mónus, P., Zsíros, T., Kiszely, M., (2002). Hungarian Earthquake Bulletin 2001. GeoRisk : Budapest

Tóth, L., Mónus, P., Zsíros, T., Kiszely, M., Czifra, T. (2003). Hungarian Earthquake Bulletin 2002., Georisk : Budapest

Tóth, L., Mónus, P., Zsíros, T., Kiszely, M., Czifra, T. (2004). Hungarian Earthquake Bulletin 2003., Georisk : Budapest

Tóth, L., Mónus, P., Zsíros, T., Kiszely, M. (2002). Seismicity in the Pannonian Region – earthquake data, EGU Stephan Mueller Special Publication Series, 3. 9–28. https://doi.org/10.5194/smsps-3-9-2002

Zsíros, T., Mónus, P., Tóth, L. (1988). Hungarian earthquake catalog MTA GGKI : Budapest, 456–1986.

Zsíros T. (2000). A Kárpát medence szeizmicitása és földrengés veszélyessége: Magyar földrengés katalógus MTA GGKI : Budapest, 456–1995.

Published

2006-10-15

How to Cite

Kovács, E., & Lipovits, Ágnes. (2006). Estimation possibilities of damages after earthquakes. Acta Agraria Kaposváriensis, 10(3), 61-74. https://journal.uni-mate.hu/index.php/aak/article/view/1826