Practical applicantions of DSPs in Process Control

Authors

  • János Gyeviki University of Szeged, College Faculty of Food Engineering Technical and Informatics Department, Szeged, Mars tér 20.
  • Attila Csiszár University of Szeged, Faculty of Natural Science Department of Theoretical Physics, Szeged, Tisza Lajos krt. 84–86.

Keywords:

DSP, Sliding mode control, Pneumatic system, Positioning

Abstract

In this paper, a sliding mode control is implemented on the Texas Instruments TMS320LF2407 digital signal processor (DSP) for control a pneumatic positioning system. As an important driving element, the pneumatic cylinder is widely used in industrial applications for many automation purposes thanks to their variety of advantages, such as: simple, clean, low cost, high speed, high power to weight ratio, easy maintenance and inherent compliance. The pneumatic servo-system is a very nonlinear time-variant control system because of the compressibility of air, the friction force between the piston and the cylinder, air mass flow rate through the servo-valve, etc. Because on control difficulties, caused by the high nonlinearity of pneumatic systems, a robust control method must be applied. Sliding mode control was introduced in the late 1970's as a control design approach for the control of robotic manipulators.

Author Biography

  • János Gyeviki, University of Szeged, College Faculty of Food Engineering Technical and Informatics Department, Szeged, Mars tér 20.

    corresponding author
    gyeviki@szef.u-szeged.hu

References

Blackburn, J. F., Rethof, G., Shearer, J. L. (1960). Fluid Power Control. MIT Press : Cambridge, MA.

Csiszár, A., Varga, A., Kovács, E. (2004). Servo-pneumatic positioning with sliding mode control (SMC). International Student Experimental Hands-on Project Competition via Internet on Intelligent Mechatronics and Automation,Taiwan

Drakunov, S., Hanchin, G. D., Su, W. C., Özgüner, Ü. (1997). Nonlinear control of rodless pneumatic servoactuator, or sliding mode versus coulomb friction. In: Automatica, 33(7), 1401–1408. https://doi.org/10.1016/S0005-1098(97)00015-0

Elek, I., Hudáky J. (1975). Az ipari pneumatika alapjai. Interpress Kiadó : Budapest

Fok, S. C., Ong, E. K. (1999). Position control and repeatability of a pneumatic rodless cylinder system for continuous positioning. In: Robotics and Computer Integrated Manufacturing, 15(5), 365–371. https://doi.org/10.1016/S0736-5845(99)00027-7

Gao, Z., Yi, H., Han, J. (2001). An alternative paradigm for control system design. In: Proc. of IEEE Conference on Decision and Control

Gyeviki, J., Tóth, I. T., Rózsahegyi K. (2004) Sliding mode control and its Application on a Servopneumatic Positioning System. In: Transactions on Automatic Control and Computer Science, 49(63), 99–103.

Gyeviki, J. (2004) Improving Positioning Accuracy of Pneumatic Systems. In: Gép/A Gépipari Tudományos Egyesület Műszaki Folyóirata, 55(9), 7–9.

Hwang, G. C., Lin, S. C. (1992). A stability approach to fuzzy control design for nonlinear systems. In: Fuzzy Sets and Systems, 48(3), 279–287. https://doi.org/10.1016/0165-0114(92)90343-3

Jeon, Y., Lee, C., Hong, Y. (1998). Optimization of the control parameters of a pneumatic servo cylinder drive using genetic algorithms. In: Control Engineering Practice, 6(7), 847–853. https://doi.org/10.1016/S0967-0661(98)00052-5

Korondi, P., Hashimoto, H., Utkin V., (1998). Direct Torsion Control of Flexible Shaft based on an Observer Based Discrete-time Sliding Mode. In: IEEE Trans. on Industrial Electronics IE, 45(2), 291–296. https://doi.org/10.1109/41.681228

Korondi, P., Hashimoto, H., (2000). Sliding Mode Design for Motion Control. In: Studies in Applied Electromagnetics and Mechanics 16. 1–12.

Korondi, P., Hashimoto, H. (1999) Park Vector Based Sliding Mode Control. In: Variable Structure System, Robust and Nonlinear Control. K. D.Young, Ü. Özgüner (eds.), ISBN: 1-85233-197-6, Springer-Verlag.

Lin, S. C., Kung, C. C. (1992). The fuzzy-slidin mode controller, In: Proceedings of the 15th National Symposium on Automatic Control R.O.C., 359–366.

Lin, S. C., Chen, Y. Y. (1994). Design of adaptive fuzzy sliding mode for nonlinea system control. In: Proceedings of Third IEEE International Conference on Fuzzy Systems USA, 35–39.

Mester, Gy. (1995). Neuro-Fuzzy-Genetic Controller Design for Robot Manipulators. In: Proc. IECON’95, IEEE, Orlando, Florida, USA, 1. 87–92. https://doi.org/10.1109/IECON.1995.483338

Mester, Gy. (1995). Neuro-Fuzzy-Genetic TrackingControl of Flexible Joint robots. In: Proc. I. Intern.Conf. on Adv. Robotics & Intelligent Aut. Athens, Greece 93–98.

Shearer, J. L. (1956). Study of pneumatic process on the continuous control of motion with compressed air. In: Transactions of ASME, 78(2), 233–249. https://doi.org/10.1115/1.4013626

Slotine, J. J., (1984). Sliding controller design for non-linear systems. In: Int. J. Control, 40(2), 421–434. https://doi.org/10.1080/00207178408933284

Song, J., Ishida, Y., (1997) Robust sliding mode control for pneumatic servo systems. In: International Journal of Engineering Science, 35(8), 711–723. https://doi.org/10.1016/S0020-7225(96)00124-3

Utkin, V., (1977). Variable Structure Systems with Sliding Mode. In: IEEE Trans. AC, 22(2), 212–222. https://doi.org/10.1109/TAC.1977.1101446

Wang, J., Pu, J., Moore, P. (1999). Accurate position control of servo pneumatic actuator systems: an application to food packaging. In: Control Engineering Practice, 7(6), 699–706. https://doi.org/10.1016/S0967-0661(99)00031-3

Wikander, J., (1988). Adaptive Control of Pneumatic Cylinders. Doctoral thesis, Royal Institute of Technology, Stockholm, 1988, ISSN 0282-0048, TRITAMAE-1988-7

Yeung, K. S., Chen, Y. P. (1988) A new controller design for manipulators using the theory of variable structure systems. In: IEEE Trans. on Automatic Control, AC, 33(2), 200–206. https://doi.org/10.1109/9.391

Young, K. D., (1987). Controller Design for Manipulator using Theory of Variable Structure Systems. In: IEEE Trans. Os System, Man and Cybernetics, SMC, 8(2), 101–256. https://doi.org/10.1109/TSMC.1978.4309907

Yin, Y., Araki, K. (1998). Modelling and analysis of an asymmetric valvecontrolled single-acting cylinder of a pneumatic force control system. In: Proceedings of the SICE Annual Conference, 109.

Published

2006-02-15

How to Cite

Gyeviki, J., & Csiszár, A. (2006). Practical applicantions of DSPs in Process Control. Acta Agraria Kaposváriensis, 10(1), 163-176. https://journal.uni-mate.hu/index.php/aak/article/view/1767